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On Determination of Optimal Coefficients of a Quadrature
Formula of Hermite Type in the Sobolev Space W̃2

(m)
(T1)

Hakim Rustamov,a) Islomjon Jalolov,b) and Bekzodjon Isomiddinov )

Bukhara State University, 11, M.Ikbol str., Bukhara 200114, Uzbekistan

a)Corresponding author: o_jalolov@mail.ru
b)

Abstract. Numerous publications are devoted to quadrature formulas; they include the values of derivatives of integrable func-
tions. When, besides the values of function f at points x on T1, the values of its derivatives of some orders are also known, then
naturally, with the correct use of all these data, a more accurate result can be expected than in the case of using only the values of
the functions.

For the error functional of the quadrature formula of Hermite type for functions of class W̃2

(m)

(T1), the norms are found; an
upper bound is obtained, and the optimal coefficients of the quadrature formula of Hermite type are determined for p(x) = 1 and
m = 4 (α = 0,1,2,3).

INTRODUCTION

It is known that the construction of quadrature formulas based on the methods of functional analysis was considered
first in the studies by A.Sard [1] and S.M.Nikolskii [2], and the cubature formulas were considered by S.L.Sobolev

[3]. S.L.Sobolev studied the problem of constructing optimal lattice formulas over the space L(m)
2 (Rn) and reduced

the finding of optimal coefficients to solving a discrete Wiener - Hopf problem (see [1]).

In the one-dimensional case, i.e. in the space L(m)
2 (R), the continuous Wiener - Hopf problem was solved by

Z.J.Jamolov (see [4]). Publications of many researchers were devoted to the construction of optimal interpolation,
optimal quadrature and cubature formulas using the method proposed by S.L.Sobolev (see [4, 5, 6, 7, 8, 9, 10, 11, 12,
13]).

In this connection, we consider the weighted quadrature formula of Hermite type

∫
T1

p(x) f (x)dx ≈
m−1

∑
α=0

N

∑
λ=1

(−1)α c(α)
λ f (α)

(
x(λ )

)
, (1)

in the Sobolev space W̃ (m)
2 (T1), where c(α)

λ and x(λ ) are, respectively, the arbitrary coefficients and nodes of the

quadrature formula (1), f (x) ∈ W̃ (m)
2 (T1), T1 is the one - dimensional torus, i.e. a circle of length equal to one, p(x)

is the weight function and α is the order of derivatives.

Definition 1. The space W̃ (m)
2 (T1) is defined as a space of functions set on a one - dimensional torus T1 and having

all generalized derivatives of order m summable with a square in norm [1]

∥∥∥ f |W̃ (m)
2 (T1)

∥∥∥2
=

⎛⎝∫
T1

f (x)dx

⎞⎠2

+ ∑
k �=0

|2πk|2m
∣∣∣∣∧f k

∣∣∣∣2, (2)

with the inner product

( f (x) ,ϕ (x)) =
∫
T1

f (m) (x)ϕ(m) (x)dx+

⎛⎝∫
T1

f (x)dx

⎞⎠⎛⎝∫
T1

ϕ (x)dx

⎞⎠ , (3)

where
∧
f k are the Fourier coefficients, i.e.

∧
f k =

∫
T1

f (x)e−2πikxdx.

)
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The difference between the integral and the quadrature sum, i.e.∫
T1

p(x) f (x)dx−
m−1

∑
α=0

N

∑
λ=1

(−1)α c(α)
λ f (α)

(
x(λ )

)

=
∫
T1

[
p(x)εT1

(x)−
m−1

∑
α=0

N

∑
λ=1

c(α)
λ δ (α)

(
x− x(λ )

)]
f (x)dx =< �

(α)
N , f >,

is called the error of the quadrature formula (1), and this difference corresponds to the generalized function

�
(α)
N (x) = p(x)εT1

(x)−
m−1

∑
α=0

N

∑
λ=1

c(α)
λ δ (α)

(
x− x(λ )

)
, (4)

and we call it the error functional of the quadrature formula (1). Here εT1
(x) - is the characteristic function T1, and

δ (x) is the Dirac delta function.

STATEMENT OF THE PROBLEM

As it is known, the problem of estimating the error of a quadrature formula on functions of some space B is equivalent
to calculating the value of the norm of error functional in the space B∗, conjugate to B, or, what is the same, to finding

the extremal function for a given quadrature formula. To solve this problem, we took the space W̃ (m)
2 (T1) as B.

The task of constructing optimal quadrature formulas over the Sobolev space W̃ (m)
2 (T1) is to calculate the following

quantity:

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥= inf

c(α)
λ ,x(λ )

sup
‖ f (x)‖�=0

∣∣∣< �
(α)
N , f >

∣∣∣∥∥∥ f |W̃ (m)
2 (T1)

∥∥∥ , (5)

where W̃ (m)∗
2 (T1) is a conjugate space to the space W̃ (m)

2 (T1).
To estimate the error of the quadrature formula, it is necessary to solve the following problem.
Problem 1. Find the norm of the error functional (4) of the given quadrature formula.
Further, to construct the optimal quadrature formula, it is necessary to solve the following problem.

Problem 2. Find values c(α)
λ and x(λ ), such that equality (5) is satisfied.

In the present article, an optimal quadrature formula is constructed in the space W̃ (m)
2 (T1) of periodic functions; the

norm of the error functional of the constructed quadrature formula in the conjugated space W̃ (m)∗
2 (T1) is calculated,

and an extremal function is found for this quadrature formula. For the error functional of the quadrature formula

of Hermite type for functions of class W̃ (m)
2 (T1), an upper bound is obtained and the optimal coefficients of the

quadrature formula of Hermite type are found for p(x) = 1 and m = 4(α = 0,1,2,3). Note that Problem 1 was solved
for p(x) = 1 in [14] and Problem 2 was solved for α = 0 in [15].

NORM AND EXTREMAL FUNCTION OF THE ERROR FUNCTIONAL OF
WEIGHTED QUADRATURE FORMULAS OF HERMITE TYPE IN THE SOBOLEV

SPACE PERIODIC FUNCTIONS

To find the norm of the error functional (4) in the space W̃ (m)∗
2 (T1), its extremal function is used.

Definition 2. Function ψ� (x) is called an extremal function of functional �
(α)
N , if the following equality holds

< �
(α)
N ,ψ� >=

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥ ·∥∥∥ψ�|W̃ (m)

2 (T1)
∥∥∥ .
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As the space W̃ (m)
2 (T1) with the inner product (3) becomes Hilbert, then, based on the Riesz theorem on the general

form of the linear continuous functional, there is a unique function ψ� ∈ W̃ (m)
2 (T1) for which

< �
(α)
N (x) , f (x)>=< ψ� (x) , f (x)> and

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥= ∥∥∥ψ�|W̃ (m)

2 (T1)
∥∥∥ . (6)

In particular, from (6) for f = ψ� we have

< �
(α)
N ,ψ� >=< ψ�,ψ� >= ‖ψ�‖2 = ‖ψ�‖ ·

∥∥∥�(α)
N

∥∥∥= ∥∥∥�(α)
N

∥∥∥2
. (7)

The following is true
Theorem 1. The square of the norm of the error functional (4) of a weighted quadrature formula of Hermite type

in the form (1) over the space W̃ (m)
2 (T1) is

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

∣∣∣∣∣ p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣∣ p̂k −
m−1

∑
α=0

N
∑

λ=1

c(α)
λ (2πi)α kα e2πikx(λ )

∣∣∣∣2
k2m , (8)

where c(α)
λ are the coefficients, x(λ )are the nodes of the quadrature formula (1), and p̂k are the Fourier coefficients of

function p(x).
Proof. It is known [3] that the following equation holds for a function f ∈ W̃ (m)

2 (T1):

f (x) =
∞

∑
k=−∞

∧
f k e2πikx = ∑

k

∧
f k e2πikx, (9)

where
∧
f k =

∫
T1

f (x)e−2πikxdx, i.e. Fourier coefficients.

Therefore, we have

< �
(α)
N , f >=< �

(α)
N ,

∞

∑
k=−∞

∧
f k e2πikx >=

∞

∑
k=−∞

∧
f k < �

(α)
N ,e2πikx >=

∞

∑
k=−∞

∧
f k �̂

(α)
k

=
∧
f0 �̂

(α)
0 + ∑

k �=0

∧
fk �̂

(α)
k . (10)

Here �̂
(α)
k =

∫
T1

�
(α)
N (x)e2πikxdx.

Now we sequentially calculate the value of the Fourier coefficients �̂
(α)
0 and �̂

(α)
k .

�̂
(α)
0 =

∫
T1

�
(α)
N (x)dx

∫
T1

[p(x)εT1
(x)]dx−

∫
T1

[
m−1

∑
α=0

N

∑
λ=1

c(α)
λ δ (α)

(
x− x(λ )

)]
dx = p̂0 −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ . (11)

�̂
(α)
k =< �

(α)
N ,e2πikx >=< p(x)εT1

(x)−
m−1

∑
α=0

N

∑
λ=1

c(α)
λ δ (α)

(
x− x(λ )

)
,e2πikx >=< p(x)εT1

(x) ,e2πikx >

−<
m−1

∑
α=0

N

∑
λ=1

c(α)
λ δ (α)

(
x− x(λ )

)
,e2πikx >= p̂k −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ (2πik)α e2πikx(λ ) ,

i.e.

�̂
(α)
k = p̂k −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ (2πik)α e2πikx(λ ) . (12)
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Applying the Schwartz inequality to the right side of (10), we obtain the following estimate:

∣∣∣< �
(α)
N , f >

∣∣∣= ∣∣∣∣∣ ∧f0 �̂
(α)
0 + ∑

k �=0

∧
fk �̂

(α)
k

∣∣∣∣∣≤
∣∣∣∣ ∧f0 �̂

(α)
0

∣∣∣∣

+

∣∣∣∣∣∑k �=0

∧
fk �̂

(α)
k (2πk)m · 1

(2πk)m

∣∣∣∣∣≤
∣∣∣∣ ∧f0 �̂

(α)
0

∣∣∣∣+ ∑
k �=0

∣∣∣∣ ∧fk

∣∣∣∣ ∣∣∣�̂(α)
k

∣∣∣ |(2πk)m| 1

|(2πk)m|

≤
{∣∣∣∣ ∧f0

∣∣∣∣2 + ∑
k �=0

∣∣∣∣ ∧fk

∣∣∣∣2|2πk|2m

} 1
2

·

⎧⎪⎨⎪⎩
∣∣∣�̂(α)

0

∣∣∣2 + ∑
k �=0

∣∣∣�̂(α)
k

∣∣∣2
|2πk|2m

⎫⎪⎬⎪⎭
1
2

=
∥∥∥ f |W̃ (m)

2 (T1)
∥∥∥ ·
⎧⎪⎨⎪⎩
∣∣∣∣∣ p̂0 −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣�̂(α)
k

∣∣∣2
k2m

⎫⎪⎬⎪⎭
1
2

. (13)

With (2), (12), and (13), we obtain

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2 ≤

∣∣∣∣∣p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣∣ p̂k −
m−1

∑
α=0

N
∑

λ=1

c(α)
λ (2πi)α kα e2πikx(λ )

∣∣∣∣2
k2m . (14)

Thus, we have obtained an upper estimate for the norm of the error functional �
(α)
N , if we obtain a lower estimate

for the norm of the error functional �
(α)
N , then the assertion of the theorem follows from here.

There is some function from W̃ (m)
2 (T1), such that inequality (14) reaches equality.

Indeed, consider the following function u(x)

u(x) = p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ +

1

(2π)2m ∑
k �=0

�̂
(α)
k e2πkix

k2m .

Let us calculate the value of functional �
(α)
N (x) for function u(x)

< �
(α)
N ,u >=< �

(α)
N (x) , p̂0 −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ >

+< �
(α)
N (x) , ∑

k �=0

�̂
(α)
k e2πikx

(2π)2mk2m
>=

∣∣∣∣∣ p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

�̂
(α)
k �̂

(α)
k

k2m =

∣∣∣∣∣ p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣�̂(α)
k

∣∣∣2
k2m . (15)

Now we prove the existence of function u(x) and its norm in the space W̃ (m)
2 (T1), for this we will prove the validity

of the following lemma.
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Lemma 1. The square of the norm of function u(x) in the space W̃ (m)
2 (T1) is:

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥2
=

∣∣∣∣∣p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣∣ p̂k −
m−1

∑
α=0

N
∑

λ=1

c(α)
λ (2πi)α kα e2πikx(λ )

∣∣∣∣2
k2m . (16)

Proof. Since equality (9) holds for all functions f (x) ∈ W̃ (m)
2 (T1), then it follows that the equation below is true for

the norm of u(x)

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥2
=

⎛⎝∫
T1

u(x)dx

⎞⎠2

+ ∑
k1 �=0

|2πk1|2m ∣∣ûk1

∣∣2, (17)

where k1 ∈ Z and ûk1
are the Fourier coefficients.

Thus, we calculate the norm of the function u in the space W̃ (m)
2 (T1) using formula (17).

In (17), for each term, we perform separate calculations:

1.

(∫
T1

u(x)dx

)2

=

(∫
T1

[
p̂0 −

m−1

∑
α=0

N
∑

λ=1

c(α)
λ + 1

(2π)2m ∑
k �=0

�̂
(α)
k e2πkix

k2m

]
dx

)2

=

⎛⎜⎜⎝[ p̂0 −
m−1

∑
α=1

N

∑
λ=1

c(α)
λ ]

∫
T1

dx+
1

(2π)2m ∑
k �=0

�̂
(α)
k

∫
T1

e2πikxdx

k2m

⎞⎟⎟⎠
2

. (18)

As
∫
T1

e2πkxdx = 0 and
∫
T1

dx = 1, then (18) has the following form

⎛⎝∫
T1

u(x)dx

⎞⎠2

=

(
[p̂0 −

m−1

∑
α=1

N

∑
λ=1

c(α)
λ ]

)2

. (19)

2. Now we calculate the value of ûk1
:

ûk1
=
∫
T1

u(x)e2πik1xdx =
∫
T1

[
p̂0 −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ +

1

(2π)2m ∑
k �=0

�̂
(α)
k e2πkix

k2m

]
e−2πik1xdx

= [ p̂0 −
m−1

∑
α=1

N

∑
λ=1

c(α)
λ ]

∫
T1

e−2πikxdx+
1

(2π)2m ∑
k �=0

�̂
(α)
k

∫
T1

e−2πik1xe2πikxdx

k2m . (20)

It is evident that ∫
T1

e2πi(k−k1)xdx =
{

1, if k = k1,

0, if k �= k1.
(21)

With (21), we obtain the following from (20)

ûk = ûk1
=

1

(2π)2m ∑
k �=0

�̂
(α)
k

k2m . (22)
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Introducing (19) and (22) into the right side of (17), we obtain

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥2
=

∣∣∣∣∣p̂0 −
m−1

∑
α=1

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+ ∑
k �=0

(2π)2mk2m

∣∣∣�(α)
k

∣∣∣2
(2π)4mk4m

. (23)

Thus, after cancellations, it follows from (23) that

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥2
=

∣∣∣∣∣ p̂0 −
m−1

∑
α=1

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣�(α)
k

∣∣∣2
k2m . (24)

Considering (12), the proof of the lemma follows from (24).
Lemma 1 is proved.

Comparing the right sides of (14) and (24), we obtain∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2 ≤

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥2
. (25)

Considering lemma 1 for the right-hand sides of (15), we have

< �
(α)
N ,u >=

∥∥∥u|W̃ (m)
2 (T1)

∥∥∥ ·∥∥∥u|W̃ (m)
2 (T1)

∥∥∥ . (26)

For the error of the quadrature formula (1) on functions u(x), the following is true:

< �
(α)
N ,u >≤

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥ ·∥∥∥u|W̃ (m)

2 (T1)
∥∥∥ . (27)

Substituting the right side of (26) into the left side of (27), we have∥∥∥u|W̃ (m)
2 (T1)

∥∥∥ ·∥∥∥u|W̃ (m)
2 (T1)

∥∥∥≤ ∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥ ·∥∥∥u|W̃ (m)

2 (T1)
∥∥∥ . (28)

After cancellations, it follows from (28) that∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥≥ ∥∥∥u|W̃ (m)

2 (T1)
∥∥∥ . (29)

From (25) and (29) we obtain ∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥= ∥∥∥u|W̃ (m)

2 (T1)
∥∥∥ . (30)

With (30), we can write the following:

< �
(α)
N ,u >=< u,u > . (31)

Equation (31) testifies to the existence of u(x) ∈ W̃ (m)
2 (T1) and thus it is an extremal function for the quadrature

formula (1), i.e. u = ψ� ∈ W̃ (m)
2 (T1), for which the following equation holds

< �
(α)
N ,ψ� >=

∥∥∥ψ�|W̃ (m)
2 (T1)

∥∥∥ ·∥∥∥ψ�|W̃ (m)
2 (T1)

∥∥∥ . (32)

Then (31) takes the following form

< �
(α)
N (x) ,ψ� (x)>=< ψ�,ψ� > . (33)

This means that all conditions of the Riesz theorem are met.

The following theorem is true.
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Theorem 2. Equations (15), (31), and (32) confirm that

u(x) = p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ +

1

(2π)2m ∑
k �=0

�̂
(α)
k e−2πkix

k2m

is an extremal function for the quadrature formula (1) and u ∈ W̃ (m)
2 (T1).

Thus, taking into account (23), (30) and the conditions of Lemma 1 for the square of the norm of the error functional
of quadrature formula (1), we have

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

∣∣∣∣∣ p̂0 −
m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m ∑
k �=0

∣∣∣∣ p̂k −
m−1

∑
α=0

N
∑

λ=1

c(α)
λ (2πi)α kα e2πix(λ )

∣∣∣∣2
k2m , (34)

which is what was required to be proved.

Based on Theorem 1, the error functional of quadrature formula (1) for the class W̃ (m)
2 (T1) functions has the fol-

lowing estimate

∣∣∣< �
(α)
N , f >

∣∣∣≤{∣∣∣∣ ∧f0

∣∣∣∣2 + ∑
k �=0

∣∣∣∣ ∧fk

∣∣∣∣2|2πk|2m

} 1
2

⎧⎨⎩
∣∣∣∣∣ p̂0 −

m−1

∑
α=0

N

∑
λ=1

c(α)
λ

∣∣∣∣∣
2

+
1

(2π)2m

× ∑
k �=0

∣∣∣∣p̂k −
m−1

∑
α=0

N
∑

λ=1

c(α)
λ (2πi)α kα e2πix(λ )

∣∣∣∣2
k2m

⎫⎪⎪⎪⎬⎪⎪⎪⎭

1
2

. (35)

MINIMIZING THE NORM OF THE ERROR FUNCTIONAL OF A QUADRATURE
FORMULA OF HERMITE TYPE IN THE PERIODIC SPACE W̃ (m)

2 (T1)

As seen in (34), the quality of the quadrature formula is characterized by the norm of the error functional and is the
function of unknown coefficients and nodes. Therefore, for computational practice, it is appropriate to be able to
calculate the norm of the error functional and estimate it. Finding the minimum of the norm of the error functional
with respect to cλ and x(λ ) is the task of studying the function to an extremum. Values cλ and x(λ ), realizing this
minimum, determine the best quadrature formula.

The main result of this study is

Theorem 3. The optimal quadrature formula of Hermite type of the form (1) in the periodic space W̃ (m)
2 (T1), for

p(x) = 1 and m = 4
(
α = 0,1,2,3

)
has equidistant nodes x(λ ) = λ

N , λ = 1,2, . . . ,N and equal coefficients c1 = c2 =

· · ·= cN = c0, c(1)1 = c(1)2 = · · ·= c(1)N = c0(1) and c(2)1 = c(2)2 = · · ·= c(2)N = c0(2), c(3)1 = c(3)2 = · · ·= c(3)N = c0(3) given
by the following formulas

c0 =

∑
k �=0

1
k4

N

⎡⎣ ∑
k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , c0(1) = 0 and

c0(2) =

∑
k �=0

1
k6

(2π)2N3

⎡⎣ ∑
k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , c0(3) = 0 (36)
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Proof. Since the optimization problem is considered for the quadrature formula (1) for p(x) = 1, then if we assume
that m = 4 in equation (34), equation (34) takes the following form

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8
·

· ∑
k �=0

∣∣∣∣ N
∑

λ=1

cλ e2πix(λ ) − (2π)2k2
N
∑

λ=1

c(2)λ e2πix(λ ) + (2πi)k
N
∑

λ=1

c(1)λ e2πix(λ ) + (2πi)3k3
N
∑

λ=1

c(3)λ e2πix(λ )
∣∣∣∣2

k8

(37)

Let us now perform some transformations with the second term in equation (37).

Let
N
∑

β=1

cβ �= 0,
N
∑

β=1

c(1)β �= 0 and
N
∑

β=1

c(2)β �= 0,
N
∑

β=1

c(3)β �= 0, then after some transformations, we obtain from (37)

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8
· ∑

k �=0

(
1

k8

∣∣∣∣∣ N

∑
λ=1

cλ e2πix(λ ) − (2π)2k2
N

∑
λ=1

c(2)λ e2πix(λ )

+ (2πi)k
N

∑
λ=1

c(1)λ e2πix(λ ) + (2πi)3k3
N

∑
λ=1

c(3)λ e2πix(λ )
∣∣∣∣∣
2
⎞⎠

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8 ∑
k �=0

⎛⎜⎜⎜⎝ 1

k8

∣∣∣∣∣∣∣∣∣
(

N

∑
β=1

cβ

)
N

∑
λ=1

cλ e2πikx(λ )

N
∑

β=1

cβ

− (2π)2k2

(
N

∑
β=1

c(2)β

)
N

∑
λ=1

c(2)λ e2πikx(λ )

N
∑

β=1

c(2)β

+ (2πi)k

(
N

∑
β=1

c(1)β

)
N

∑
λ=1

c(1)λ e2πikx(λ )

N
∑

β=1

c(1)β

+(2πi)3k3

(
N

∑
β=1

c(3)β

)
N

∑
λ=1

c(3)λ e2πikx(λ )

N
∑

β=1

c(3)β

∣∣∣∣∣∣∣∣∣
2⎞⎟⎟⎟⎠=

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8 ∑
k �=0

(
1

k8

∣∣∣∣∣
(

N

∑
β=1

cβ

)
N

∑
λ=1

c
′
λ e2πikx(λ ) − (2π)2k2

(
N

∑
β=1

c(2)β

)
N

∑
λ=1

c
′ (2)
λ e2πikx(λ )

+ (2πi)k

(
N

∑
β=1

c(1)β

)
N

∑
λ=1

c
′ (1)
λ e2πikx(λ ) + (2πi)3k3

(
N

∑
β=1

c(3)β

)
N

∑
λ=1

c
′ (3)
λ e2πikx(λ )

∣∣∣∣∣
2
⎞⎠ , (38)

where

c′λ =
cλ

N
∑

β=1

cβ

, c′(1)λ =
c(1)λ

N
∑

β=1

c(1)β

and c′(2)λ =
c(2)λ

N
∑

β=1

c(2)β

, c′(3)λ =
c(3)λ

N
∑

β=1

c(3)β

. (39)

It is evident that

N

∑
λ=1

c
′
λ = 1,

N

∑
λ=1

c
′(1)
λ = 1 and

N

∑
λ=1

c
′(2)
λ = 1 ,

N

∑
λ=1

c
′(3)
λ = 1. (40)

With (39) and (40), equation (38) is rewritten in the following form

060029-8

 23 M
arch 2024 01:19:01



∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8 ∑
k �=0

(
1

k8

∣∣∣∣∣
(

N

∑
β=1

cβ

)
N

∑
λ=1

c
′
λ e2πikx(λ ) − (2π)2k2

(
N

∑
β=1

c(2)β

)

×
N

∑
λ=1

c
′ (2)
λ e2πikx(λ ) + i

(
(2π)k

(
N

∑
β=1

c(1)β

)
N

∑
λ=1

c
′ (1)
λ e2πikx(λ ) − (2π)3k3

(
N

∑
β=1

c(3)β

)
N

∑
λ=1

c
′ (3)
λ e2πikx(λ )

)∣∣∣∣∣
2
⎞⎠ .

(41)

Hence

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8 ∑
k �=0

(
1

k8

∣∣∣∣∣
((

N

∑
β=1

cβ

)
N

∑
λ=1

c
′
λ e2πikx(λ ) − (2π)2k2

(
N

∑
β=1

c(2)β

)

×
N

∑
λ=1

c
′ (2)
λ e2πikx(λ )

)2

+

⎛⎝(2π)k

(
N

∑
β=1

c(1)β

)2( N

∑
λ=1

c
′ (1)
λ e2πikx(λ )

)
− (2π)3k3

(
N

∑
β=1

c(3)β

)2( N

∑
λ=1

c
′ (3)
λ e2πikx(λ )

)⎞⎠2
∣∣∣∣∣∣∣
⎞⎟⎠

(42)

Denoting the left side of (42) by
N
∑

λ=1

cλ = x1 ,
N
∑

λ=1

c(1)λ = x2 ,
N
∑

λ=1

c(2)λ = x3 and
N
∑

λ=1

c(3)λ = x4, after some transforma-

tions, equation (42) is rewritten as the polynomial of the second degree in x1,x2,x3 and x4

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8 ∑
k �=0

1

k8

⎛⎝(x1

N

∑
λ=1

c
′
λ e2πikx(λ ) − (2π)2k2x3

N

∑
λ=1

c
′ (2)
λ e2πikx(λ )

)2

+

(
(2π)kx2

(
N

∑
λ=1

c
′ (1)
λ e2πikx(λ )

)
− (2π)3k3x4

(
N

∑
λ=1

c
′ (3)
λ e2πikx(λ )

))2
⎞⎠ .

(43)

Or

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2π)8
x2

1 ∑
k �=0

(
N
∑

λ=1

c
′
λ e2πikx(λ )

)2

k8
− 1

(2π)6
2x1x3 ∑

k �=0

N
∑

λ=1

c
′ (2)
λ e2πikx(λ )

N
∑

λ=1

c
′
λ e2πikx(λ )

k6

+
1

(2π)4
x2

3 ∑
k �=0

(
N
∑

λ=1

c
′ (2)
λ e2πikx(λ )

)2

k4
+

1

(2π)6
x2

2 ∑
k �=0

(
N
∑

λ=1

c
′ (1)
λ e2πikx(λ )

)2

k6

− 1

(2π)4
2x2x4 ∑

k �=0

N
∑

λ=1

c
′ (1)
λ e2πikx(λ )

N
∑

λ=1

c
′ (3)
λ e2πikx(λ )

k4
+

1

(2π)2
x2

4 ∑
k �=0

(
N
∑

λ=1

c
′ (3)
λ e2πikx(λ )

)2

k2
.

(44)

With conditions (40) in equation (44), using the results given in [16, 17], we obtain

∥∥∥�(α)
N |W̃ (m)∗

2 (T1)
∥∥∥2

=

(
1−

N

∑
λ=1

cλ

)2

+
1

(2πN)8
x2

1 ∑
k �=0

1

k8
− 1

(2πN)6
2x1x3 ∑

k �=0

1

k6

+
1

(2πN)4
x2

3 ∑
k �=0

1

k4
+

1

(2πN)6
x2

2 ∑
k �=0

1

k6
− 1

(2πN)4
2x2x4 ∑

k �=0

1

k4
+

1

(2πN)2
x2

4 ∑
k �=0

1

k2
.

(45)

060029-9

 23 M
arch 2024 01:19:01



Here we took into account that the sums

∑
k �=0

∣∣∣∣ N
∑

λ=1

c
′
λ e2πikx(λ )

∣∣∣∣2
k8

, ∑
k �=0

∣∣∣∣ N
∑

λ=1

c
′ (2)
λ e2πikx(λ )

∣∣∣∣2
k6

, and ∑
k �=0

∣∣∣∣ N
∑

λ=1

c
′ (1)
λ e2πikx(λ )

∣∣∣∣2
k4

, ∑
k �=0

∣∣∣∣ N
∑

λ=1

c
′ (3)
λ e2πikx(λ )

∣∣∣∣2
k2

reach their minimum values, equal to

1

N8 ∑
k �=0

1

k8
,

1

N6 ∑
k �=0

1

k6
and

1

N4 ∑
k �=0

1

k4
,

1

N2 ∑
k �=0

1

k2

respectively, when nodes x(λ ) of the quadrature formula (1) are equidistant and all coefficients c
′
λ are equal to each

other, i.e.

c
′
λ =

1

N
,c

′(1)
λ =

1

N
,c

′(2)
λ =

1

N
,c

′(3)
λ =

1

N
and x(λ ) =

λ
N
,λ = 1,N. (46)

Now we will consider the right side of (45) as a function of four variables x1,x2,x3,x4 and denote it by y(x1,x2,x3,x4),
i.e.

y(x1,x2,x3,x4) =

(
1−

N

∑
λ=1

cλ

)2

+
1

(2πN)8
x2

1 ∑
k �=0

1

k8
− 1

(2πN)6
2x1x3 ∑

k �=0

1

k6

+
1

(2πN)4
x2

3 ∑
k �=0

1

k4
+

1

(2πN)6
x2

2 ∑
k �=0

1

k6
− 1

(2πN)4
2x2x4 ∑

k �=0

1

k4
+

1

(2πN)2
x2

4 ∑
k �=0

1

k2

(47)

Then from the necessary condition for extremum, from (47) we obtain a system of equations with four unknowns
x1,x2 and x3,x4.

y
′
x1
(x1,x2,x3,x4) =−2(1− x1)+

2

(2πN)8
x1 ∑

k �=0

1

k8
− 1

(2πN)6
2x3 ∑

k �=0

1

k6
= 0

y
′
x2
(x1,x2,x3,x4) =

1

(2πN)6
2x2 ∑

k �=0

1

k6
− 1

(2πN)4
2x4 ∑

k �=0

1

k4
= 0,

y
′
x3
(x1,x2,x3,x4) =− 2

(2πN)6
x1 ∑

k �=0

1

k6
+

1

(2πN)4
2x3 ∑

k �=0

1

k4
= 0, (48)

y
′
x4
(x1,x2,x3,x4) =− 2

(2πN)4
x2 ∑

k �=0

1

k4
+

1

(2πN)2
2x4 ∑

k �=0

1

k2
= 0,

After some simplifications, we obtain from (48)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

(
1+

1

(2πN)8 ∑
k �=0

1

k8

)
− 1

(2πN)6
x3 ∑

k �=0

1

k6
= 1,

x2 ∑
k �=0

1

k6
=

(2πN)2

∑
k �=0

1
k6

x4 ∑
k �=0

1

k4
,

x4

⎡⎢⎣(2πN)2 ∑
k �=0

1

k2
− (2πN)2

∑
k �=0

1
k6

4

∑
k �=0

1

k4

⎤⎥⎦= 0,

x3 =
1

(2πN2) ∑
k �=0

1
k4

x1 ∑
k �=0

1

k6
.

(49)
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Solving system (49) and introducing some transformations, we successively determine x1,x2,x3 and x4 , i.e.

x1 =

∑
k �=0

1
k4⎡⎣ ∑

k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , x2 = 0

and

x3 =

∑
k �=0

1
k6

(2π)2N2

⎡⎣ ∑
k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , x4 = 0 (50)

Let c
′
λ = 1

N , c
′(1)
λ = 1

N and c
′(2)
λ = 1

N , c
′(3)
λ = 1

N

(
λ = 1,N

)
then from (36) and (46), it follows that

c1 = c2 = ...= cN = c0 , c(1)1 = c(1)2 = ...= c(1)N = c0(1) and c(2)1 = c(2)2 = ...= c(2)N = c0(2), c(3)1 = c(3)2 = ...= c(3)N = c0(3).
Hence

x1 =
N

∑
λ=1

cλ = Nc0, x2 =
N

∑
λ=1

c(1)λ = Nc0(1) and x3 =
N

∑
λ=1

c(2)λ = Nc0(2), x4 =
N

∑
λ=1

c(3)λ = Nc0(3). (51)

Substituting (50) into (51) we find the optimal coefficients of quadrature formulas of Hermite type in the following
form (1)

c0 =

∑
k �=0

1
k4

N

⎡⎣ ∑
k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , c0(1) = 0 (52)

and

c0(2) =

∑
k �=0

1
k6

(2π)2N3

⎡⎣ ∑
k �=0

1
k4 +

1

(2π)8N8

⎛⎝ ∑
k �=0

1
k4 ∑

k �=0

1
k8 −

(
∑

k �=0

1
k6

)2
⎞⎠⎤⎦ , c0(3) = 0 (53)

which is what was required to be proved.
Note that similar problems were solved in [18, 19].

CONCLUSION

The quality of the quadrature formula is characterized by the norm of the error functional.
This formula is a function of unknown coefficients and nodes. Therefore, for computational practice, it is appro-

priate to be able to calculate the norm of the error functional and estimate it. Finding the minimum of the norm of the
error functional with respect to cλ and x(λ ) is the task of investigating a function of many variables on an extremum.

Values cλ and x(λ ), realizing this minimum, determine the optimal formula. We considered the optimal quadrature
formula to be the one in which, for a given number of nodes, the error functional has the minimum norm.

The following problems solved:
1. The norm of the error functional of quadrature formulas in the space B is calculated.
2. The optimal quadrature formula, i.e. quadrature formula with the minimum norm of the error functional in B is

constructed.
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