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Abstract. In this work, the study of the problems associated with the propagation of natural 
waves in multilayer viscoelastic cylindrical bodies with a weakened mechanical contact is 
discussed. A detailed analysis of well-known works devoted to this problem is given. A 
mathematical formulation, a technique, and an algorithm for studying the damping properties of 
natural waves in multilayered cylindrical mechanical systems with a weakened mechanical 
contact are developed. The solution of the considered problem was obtained by the method of 
separating the variables based on the theory of potential functions (special functions).The 
complex roots (phase velocities) of the dispersion transcendental equation for given 
wavenumbers are determined numerically by the Muller method. The phase and group velocities 
of a structurally heterogeneous mechanical system at various geometric and physical-mechanical 
parameters for the elements of the mechanical system are investigated. It was established that 
the real parts of the wave velocity will increase by only a few percent, and the imaginary parts 
for structurally heterogeneous mechanical systems radically change; the phase velocities (real 
parts of the complex velocity) of natural waves with an increasing wave numbers around the 
cylinder circumference of structurally heterogeneous mechanical systems first decrease and then 
begin to increase. A mechanical effect was discovered for structurally heterogeneous mechanical 
systems, which provides damping for the waves of the mechanical system as a whole. 
 

1. Introduction 

In geological engineering and mining mechanics, the concept of surfaces with a weakened mechanical 
contact (WMC) is established as surfaces along which a rigid connection is broken between adjacent 
sections of the environment, which in some cases leads to emergencies during mining and technical 
activities [1, 2]. WMC surfaces can be layer change boundaries with different lithologies, thin layers of 
soft rocks, tectonic fractures, surfaces of a change in sedimentary accumulation conditions, etc. The 
diagnosis and localization of WMC surfaces by acoustic and seismic means represent a task that can 
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only be solved by understanding, in detail, the nature of the wave field propagating in long cylindrical 
layers, having an imperfect contact with the environment. In general, the degree of weakness is 
characterized by an effective coupling coefficient Kv, including in the boundary condition connecting 
the tangential voltage at the contact 𝜏 with displacement jump 𝛥𝑢, parallel to the border: 

vК u =   [3, 

4]. A hard contact is obtained when 𝐾𝑣 → ∞, and a sliding contact is obtained when 𝐾𝑣 → 0. Thus, the 
sliding contact is the limiting case of a WMC, and it can be assumed that the main features of the field 
at 0vK =  should have much in common with the fields, observed with a large weakening of the contact 

𝐾𝑣 ≤ 1. A study on the dynamics of layered cylindrical bodies with rigid contacts has received much 
attention [5, 6]. Various aspects of the processes of excitation and propagation of waves in cylindrical 
bodies associated with various elastic and acoustic media are investigated in these works. In [7], the 
unsteady behaviour of a wave field propagating in a cylinder under the influence of pulsed pressures 
with allowance for WMCs was considered. In previous works [8, 9], the properties of surface waves in 
elastic cylinders in contact with an infinite elastic environment were studied. 

In solving such problems, studying the roots of the dispersion equation is a necessary step in a number 
of practically important problems. In a number of problems in the works [6, 8–10], dispersion equations 
are constructed, and based on the Newton numerical method, numerical results for a rigid contact 
condition are obtained. In particular, the study of the asymptotic behaviour of the roots as the wave 
parameters tend to zero or infinity for the analysis of the propagation of unsteady waves under the 
influence of shock plays an important role in the works of [10, 11]. 

In previous works [12, 13], the acoustic spectroscopic properties of cylindrical waveguides were 
studied. Additionally, in many other works [14, 15], theoretical and applied problems of the dynamics 
of deformable bodies associated with WMCs were studied. 

Along with this study, the dynamics of various heterogeneous elastic and viscoelastic systems, taking 
into account their features and working conditions, are the focus of works devoted to evaluating the 
natural vibrations and dynamic behaviour of a structure under various influences [24–34]. 

Here, a review of only some of the works that are devoted to assessing the dynamics of various 
heterogeneous systems with WMCs is provided. Currently, unlike elastic waveguides with WMCs, the 
features of dispersion of deformation waves in hereditary viscoelastic bodies, taking into account 
WMCs, have been insufficiently studied [16, 17].Therefore the study of wave propagation in elastic and 
viscoelastic cylindrical layers with WMCs is an urgent problem. Therefore, in this paper, the problem 
of wave propagation in a deformable layer in sliding contact with a viscoelastic half-space is considered. 
Such a model was previously considered in [18], which applied to the description of low-frequency 
waves without taking into account the rheological properties of the material at  𝐾𝑣 = 0. 

 
2. Methods 

2.1 Statement of the problem and methods of the solution 

The problem of the propagation of natural waves (i.e., oscillatory processes) in multilayered cylindrical 
bodies located in a viscoelastic (or acoustic) environment is considered. The equations of motion for a 
multilayered body and its environment, in the absence of mass forces, satisfy the integro-differential 
equations: 

2
2

2( )к к к к

u
u graddi u

t
    


 + + =


 , (к =1, 2, 3..N, N+1)    ,     (1) 
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where 𝑢⃗  -is a vector of the displacements of the environment points; к -is the material density of the к-
th layer; кк  , -are integral operators describing the mechanical properties of the к-th layer; and N -is 
the number of layers, 

 

 

0
0

0
0

( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ,

t

к к к

t

к к к

f t f t R t f d

f t f t R t f d





    

    

 
= − − 

 

 
= − − 

 




                    

(2)
 

here𝑓(𝑡)-is an arbitrary function of time; 𝑅𝜆к(𝑡 − 𝜏) and 𝑅𝜇к(𝑡 − 𝜏) -are relaxation cores; and 𝜆0к, 𝜇0к 
-are instantaneous Lame constants, associated with the mechanical properties of the material or 
environment (modulus of elasticity). 

The integral terms in (2) are accepted as small. Furthermore, using the freezing procedure, the 
relations in (2) are replaced by the approximate relations of the form [4] 

  ( ) ( )0( ) 1 ( )С S

j j j R j Rf t i f t     = − −  
,  

                   ( ) ( )0( ) 1 ( ).С S

к к к R к Rf t i f t     = − −  
 

Here, 
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к
,, 

the cosine and sine images of the Fourier, ( ) −tR к
 and ( ) −tR к

- are relaxation cores, and R -is a 
real value. 

Hard contact conditions are set between the layers  

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2); ; ; ; ; .rr rr r r rz rz r r z zu u u u u u        = = = = = = (3) 

or sliding (WMC) contact 

(1) (2) (1) (2) (1) (2) (1) (2); 0;rr rr r r rz rz r ru u      = = = = = = .           (4) 

If there is friction on the contact, then 

(1) (2) (1) (1) (1) (2) (2) (2) (1) (2); , ;rr rr r rz rr r rz rr r rk k u u        = = = = = = ,     (5) 

where k -is the coefficient of friction. 

The potentials of the displacements at infinity r → ∞ satisfy the Somerfield radiation conditions: 
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𝑙𝑖𝑚
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(
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Equation (1) is solved for the potentials of the displacements. Then, for the displacement vector, the 
Green-Lemb decomposition is valid 

𝑢⃗ к = 𝑔𝑟𝑎𝑑𝜙к + 𝑟𝑜𝑡𝜓⃗ к, 𝑑𝑖𝑣𝜓⃗ к = 0,                                     (6) 

here, 𝝓к -is the longitudinal wave potential, and 𝜓⃗ к(𝜓𝑥к, 𝜓𝑦к, 𝜓𝑧к) -is the shear wave potential: 
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    (7)   

Here, 𝑐̄𝑠к
2 = 𝑐𝑠к

2 Гк
• , 𝑐̄𝑝к

2 = 𝑐𝑝к
2 Гк

• , Гк
• = 1 − 𝛤к

С(𝜔𝑅) − 𝑖𝛤к
𝑆(𝜔𝑅), 𝑐𝑝𝑘

2 = (𝜆𝑘 + 2𝜇𝑘)/𝜌𝑘; 𝑐𝑠𝑘
2 = 𝜇𝑘/𝜌𝑘. 

The geometry of the object and the natural assumption about the nature of the wave motion along 
the Oz axis make it possible to substantially predict the shape of the desired scalar and vector functions. 
They should represent waves running along the Oz axis. Based on this consideration, the solution of the 
wave equation in equation (7) is sought in the form 

𝜙𝑘(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝜑𝑛

∞

𝑛=0

(𝛼𝑘𝑟) {
𝑐𝑜𝑠 𝑛 𝜃
−𝑠𝑖𝑛 𝑛 𝜃

} 𝑒±𝑖𝛾𝑝𝑧𝑒−𝑖𝜔𝑡; 

𝜓𝑟𝑘(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝜓𝑛𝑟(𝛽 𝑟𝑘 ) {
𝑠𝑖𝑛 𝑛 𝜃
−𝑐𝑜𝑠 𝑛 𝜃

} 𝑒±𝑖𝛾𝑝𝑧𝑒−𝑖𝜔𝑡;

∞

𝑛=0

 

𝜓𝜃𝑘(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝜓𝑛𝜃(𝛽 𝑟𝑘 ) {
𝑐𝑜𝑠 𝑛 𝜃
−𝑠𝑖𝑛 𝑛 𝜃

} 𝑒±𝑖𝛾𝑝𝑧𝑒−𝑖𝜔𝑡;

∞

𝑛=0

 

𝜓𝑧𝑘(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝜓𝑛𝑧(𝛽 𝑟𝑘 ) {
𝑠𝑖𝑛 𝑛 𝜃
𝑐𝑜𝑠 𝑛 𝜃

} 𝑒±𝑖𝛾𝑝𝑧𝑒−𝑖𝜔𝑡 .∞
𝑛=0                                  (8) 

Here, dimensionless coordinates 𝑟 = 𝑟1/𝑎0, 𝑧 = 𝑧1/𝑎0 -are introduced and used; n -is an integer; and 
𝛾р -is the dimensionless wave propagation constant. 

The unknown functions of the radial coordinate in work [8] satisfy the following ordinary differential 
equations: 
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The solution of the ordinary differential equations with complex coefficients in equation (9) is 
expressed in terms of the special functions of Bessel and Hankel [19]. 

2.2. The method of obtaining the dispersion equation 

Consider a cylindrical coordinate system (r,z,θ) model of a mechanical system consisting of a multilayer 

pipe: 

1.(𝒓𝟏 ≤ 𝒓 ≤ 𝒓𝟐),  2.(𝒓𝟐 ≤ 𝒓 ≤ 𝒓𝟑).....n-1.(𝒓𝒏−𝟐 ≤ 𝒓 ≤ 𝒓𝒏−𝟏), n. (𝒓 ≥ 𝒓𝒏). 

Assume that the space inside the pipe (𝒓𝟎 ≤ 𝒓 ≤ 𝒓𝟏) is filled with liquid. Consider the problem of 
natural vibrations arising in such systems. The equations of motion of the environment for longitudinal 
and transverse potentials are presented in the form of (7) - (9). At the interfaces between the elastic 
environment and the liquid, the boundary conditions of continuity of the normal components of the 
displacements and stresses and tangential stresses equal to zero are satisfied. 

The solution of equation (9) satisfying the condition of finiteness of the field on the axis 𝒓 = 𝟎 and 
the conditions of decreasing at infinity can be written in the form 
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Here, 𝑱𝒏 and Nn - are Bessel and Neumann functions of the complex argument n-th order. Instead of 
the Bessel and Neumann functions, in the general case, the first-kind Hankel functions of the n-th order 
of the complex argument are used, namely,𝑯𝒏

(𝟏) and 𝑯𝒏
(𝟐) . Then, the generalized Hooke’s law 

according to [20,21] takes the form  
(𝟏 → 𝒙, 𝟐 → 𝒚, 𝟑 → 𝒛) 
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Substituting the expressions in (10) into the boundary conditions in (4) with allowance (11) gives a 
system of 6n linear independent equations with complex coefficients with 6n unknowns. The problem 
of the propagation of natural waves comes down to the problem of natural values with complex output 
parameters, i.e., 

2( ( , , , , , , ) ) 0,R I pк sк р кС c c D А V    − =  
where matrix A, in the general case, has a block-diagonal structure. Matrix C consists of block structure 
matrices, the elements of which consist of a combination of the Bessel (or Hankel) function of the 
complex argument 

           

1 1................
. ............... .

..................

j n

nj nn

c c

С

c c

 
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=  
 
 

 

Here, the elementsс𝟏𝒋, . . . . . . . . . . . , с𝒏𝒏 −are elements of complex matrices with dimensions (6k x 6k). 
The conditions for the existence of a nontrivial solution lead to the dispersion equation, which 
determines the phase velocity of normal waves as an implicit function of the complex frequency and 
phase velocity 

2( , , , , , , ) 0,R I pк sк р кС c c D А    − =                                   (12) 
where k = 1,2... n, and D -is geometric parameter. 

It is known that the roots of dispersion equation (12) describe the field of normal waves arising in a 
viscoelastic mechanical system with WMC (one or several). Complex roots corresponds to damped 
natural vibrations. If an elastic mechanical system is considered, then 𝑅𝜆𝑘 = 0, 𝑅𝜇𝑘 = 0, and in wave 
propagation processes, the waves change their amplitude only due to geometric divergence and 
dispersion, but the complex roots describe leakage waves that exhibit additional exponential attenuation 
with scattering due to the re-emission of energy from the layer (for a body, not connected to an infinite 
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environment). For these reasons, studying the behaviour of roots on the complex plane of variables 𝜔𝐼 
and 𝜔𝑅, as functions of dimensionless parameters 𝛾р𝑟1, represents an important part of decision research. 

The roots of equation (12) can be divided into two classes. The first class includes those that, for 
𝛾р𝑟1 = 0, are at a finite distance from the origin. All the other roots belong to the second class. In 
formulas (7) - (8), the frequency is determined by the expression 𝜔 = 𝛾р𝑟1𝐼𝑚𝜔 + 𝛾р𝑟 𝑅𝑒 𝜔, and then 
the roots of the first class describe damped oscillations, the spectrum of which begins at a frequency 
equal to zero. The roots of the second class correspond to vibrations starting from the boundary 
frequencies [20] 

( ) 1
1 1 1Im .lim

р

n р s s kC n C r


    −

→

=       (13) 

The root behaviour under conditions 𝛾р𝑟1 << 0 , 𝛾р𝑟|𝜔𝐼| < 1 (𝑅𝜇𝑘 = 0) was studied in detail in 
the work [20]. For a specific example, we consider the propagation and attenuation of natural waves in 
two-layered cylindrical bodies (when k = 1.2) with a liquid (k = 0) located in an infinite environment (k 
= 3). The above mechanical system represents a well model [21]. The complex phase velocity is denoted 
by 

fc , and the group velocity is determined by the complex quantity 𝜗𝑔𝑟.The real parts of the natural 

waves express the group velocity, and the imaginary parts - the attenuation coefficients of the group 
waves. Wave attenuation is determined by the following formula for 𝛿𝑧 

2

2 (Im )
(Re )

f

z

f

c

c


 = . 

3. Results and discussion 

A C ++ program is compiled to calculate the complex roots corresponding to a decaying wave along the 
cavity lining. The complex roots of equation (12) are found by the Muller method. The frequencies of 
the corresponding elastic problem are used as an initial approximation. Depending on the ratio of the 
thickness of the first 𝛥𝑟1(𝑟2 − 𝑟1) and second 𝛥𝑟2(𝑟3 − 𝑟2) pipes, waves of a special nature are selected, 
caused by the imperfect contact ( 3r r= ) of a two-layer body with the environment (k = 3). The roots 
of equation (12) exist for arbitrary relations between the physical constants of the environment in which 
there are purely imaginary roots of equation (12) related to the segment 𝑖 ≤ 𝐼𝑚𝜔 ≤ 𝑖𝛿0

−1 [21]. Outside 
the interval, there are real roots of the dispersion equation (for elastic mechanical systems). Furthermore, 
due to the symmetry of the roots with respect to the real roots, we will consider only the upper half-
plane 𝐼𝑚𝜔 = 𝜔𝐼 < 0 . Figure 1 shows the dependences of the real and imaginary parts of the 
frequencies. It can be seen from the figure1 that, in addition to complex roots, in low-frequency regions, 
there are imaginary roots, which correspond to the aperiodic motions of the mechanical system. The 
roots moving with growth 1рr  from point 1

1
−i  down the imaginary axis correspond to normal waves 

and describe the phase velocity dispersion 1r Im = . As a function of the wavenumber 
р or frequency

 , waves of this nature have been studied in detail in the problems of wave propagation in layered 
environments in [21]. We present the results for two variants of environmental models called the low-
speed (ср1 = 2500𝑚/𝑠𝑒𝑐  and ср1 = 1500𝑚/𝑠𝑒𝑐 ) (figures 1 and 2) and high-speed cases (ср1 =
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5000𝑚/𝑠𝑒𝑐 and с𝑠1 = 2500𝑚/𝑠𝑒𝑐) (figures 3 and 4). In both cases, the qualitative behaviour of the 
kinematic and dynamic characteristics of the wave turn out to be almost the same. 

 

Figure 1. Lines of motion of the roots on the complex plane. 1 - zero mode, 2-first mode, and 3-second 
mode 3

0 0( 5000 / , 3 / ,рс m с г см= = ср1
= 4000,  с𝑠1

= 2000𝑚/с,  𝜌1 = 3г/см3) 

When studying the dispersion of the phase velocity of a wave over a cylindrical shell, the presence of a 
boundary frequency is characterized by

gr in the indicated region starting with which the phase velocity 

сf decreases rapidly with increasing cut-off frequencies 
gr . For the considered problem with a slight 

increase (up to 10%) of the longitudinal wave velocity in the pipe material, the boundary frequency 
gr

changes to 50%. As an example of a viscoelastic material, we consider Koltunov-Rzhanitsyn’s three-
parameter relaxation core [22-24]: 𝑅к(𝑡) = 𝐴к𝑒

−𝛽к𝑡/𝑡1−𝛼к . When the velocity of the longitudinal 
waves decreases from ср2 = 5000𝑚/𝑠𝑒𝑐 to 2500 m/s, the phase velocity changes by no more than 20% 
(𝐴к = 0,048; 𝛽к = 0,05;  𝛼к = 0,1) (figure 5). The group speed

gr in a viscoelastic environment is 

complex, the real part of which expresses the group velocity of the natural waves, and the imaginary 
part is the damping coefficient of the group waves. 
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Figure 2. Dispersion of the phase (solid lines) and group (broken lines) velocities of the damped 
waves along the cylinder with the liquid in the case of a low-speed 

( 1 2250 / secрс m= с𝑠1 = 1500𝑚/𝑠𝑒𝑐) part1.−𝛥𝑟1/𝑟1 = 0,2. −0.05,3.−0.1,4.−03
 

 

 

Figure 3. Dispersion of the phase (solid lines) and attenuation (broken lines) waves along the 
mechanical system in the case of a low-speed ( 1 2250 / secрс m= ср𝟏 = 1500m/𝒔𝑒𝑐) part1.−𝛥𝑟1/𝑟1 =

0,2.−0.05,3. −0.1,4.−03 
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Figure 4. Dispersion of the phase (solid lines) and group (broken lines) velocities of the 
decaying wave along the cylinder with the liquid in the case of a low-speed 

(ср1 = 3500𝑚/𝑠𝑒𝑐 ср1 = 2500𝑚/𝑠𝑒𝑐) part1.−𝛥𝑟1/𝑟1 = 0,2. −0.05,3.−0.1,4.−0,3 
 

 

Figure 5. The dispersion of the phase (solid lines) and the attenuation (broken lines) of the wave 
along the mechanical system in the case of a low-speed (ср1 = 3500𝑚/𝑠𝑒𝑐  , ср1 = 2500𝑚/𝑠𝑒𝑐), 
part1.−𝛥𝑟1/𝑟1 = 0,2.−0.05,3.−0.1,4.−03 
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At the WMC between the pipe and the outer layers, 
fc is practically independent of 1r . Additionally, 

the phase velocity of the wave along the two-layered pipe decreases with increasing 𝛥𝑟1  at low 
frequencies and is practically independent of 𝛥𝑟1  at higher frequencies [25-29]. For example, 
𝜗𝑔𝑟 decreases with increasing 𝛥𝑟1/𝑟 ∈ [0,0.2]. 

When studying the wave motion of particles of dissipative mechanical systems, the concept of an 
excitation function is often used, which characterizes the distribution of the wave energy over various 
frequencies: 

𝛦(𝛾𝑝) = |
𝛾𝑝𝛥̃1

𝜕𝛥̃1/𝜕𝑐𝑓
|.                              (14) 

Here, the determinant 𝛥̃1 is obtained from (12) by replacing the Bessel function in the first column with 
the Hankel function (𝐽0(𝑥) to 𝐻0

(2)
(𝑥) and 𝐽1(𝑥) to 𝐻1

(2)
(𝑥)). The excitation functions sharply increase 

in the vicinity of the point where the wavenumbers are 2pr  =1 and 2 [30-34]. Delay energy begins to 

grow late: 𝛾𝑝𝑟2 ≥ 1.5 . This represents the presence of a group of intense oscillations with phase 
velocities and a decrease in the corresponding attenuation coefficient in the interval 0 ≤ 𝛾𝑝𝑟2 ≤ 1.4999, 
the dynamics and kinematics of which have a weak environment. 

The obtained numerical results were compared with the numerical results obtained from the 
analytical solution [35, 36] for the same values of parameters. The difference in results was up to 12%. 

The research results can also be used in the development of a new design for drying cotton seeds 
[37,38], as well as in improving the energy efficiency and reliability of power supply [39,40]. 

4. Conclusions 

1. A mathematical formulation has been developed for studying the damping properties of natural waves 
in multilayer cylindrical viscoelastic mechanical systems with weakened mechanical contacts (WMC). 
2. An effective technique has been developed for studying the dispersion phenomenon and the damping 
capabilities of heterogeneous viscoelastic mechanical systems, and the complex roots of transcendent 
equations were determined by the Muller and Gauss methods. 
3. The phase and group velocities of a structurally heterogeneous mechanical system were studied at 
various geometric and physical-mechanical parameters for the elements of the mechanical system. 
4. The following conclusions were obtained: 
- there are interference oscillations in viscoelastic mechanical systems with a weakened mechanical 
contact, which, according to their dispersion properties, have little dependence on the elastic parameters 
of the environment and are determined by the design features; 
- phase wave velocities in heterogeneous viscoelastic mechanical systems with weakened mechanical 
contacts vary from the wave velocity along the cylinder to the shear wave velocity in the half-space; 
- in viscoelastic mechanical systems with a weakened mechanical contact (WMC), the emerging waves 
have relatively large amplitudes and are characterized by large attenuation; therefore, as the distance 
between the source and receiver increases, their contribution to the total field decreases. 
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