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The solution of the Cauchy problem for partial differential equations of hyperbolic type J.
Hadamard led to singular integrals of a special form. Later they were called integrals in the
sense of Hadamard, or Hadamard integrals. In addition to equations of the hyperbolic
type, Hadamard integrals are widely used in the theory of elasticity, electrodynamics,
aerodynamics, and a number of other important areas of mechanics and mathematical
physics. The exact calculation of the Hadamard integrals is possible only in exceptional
cases, so there is a need to develop approximate methods for calculating. In the present
paper, we develop an optimal algorithm for the approximate calculation of the Hadamard
integral for p = 3. Here we are engaged in finding the analytical form of the coefficients
of the optimal quadrature formula.
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1 Introduction

There are a large number of problems, both in physics and technology, and directly in
various sections of mathematics, the solution of which requires to calculate hypersingular
integrals. Since direct computations of such integrals is possible only in exceptional cases,
it becomes necessary to develop new approximate methods. This paper is devoted to
construction of an approximate method for calculating hypersingular integrals. Particular
attention is paid to investigation of connection between methods for calculating singular
and hypersingular integrals.

We consider the following hypersingular integral

b
Hf:/é(i—)i;’ a<t<bp=23,... (1)

We construct an optimal quadrature formula for approximate integration of integral
(1) for the case a = 0,b = 1,p = 3. In this case integral (1) becomes as follows
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where its kernel has a higher order singularity than the demension of the integral. A
sufficient condition for f to be finite-part integrable is that the derivative of f is a Holder
continuous function.

2 Statement of the problem
We reduce integral (2) to the form integrating by parts

[l () (1)

Now it is enough to construct an optimal quadrature formula for numerical integration
of the Cauchy type singular integral which is in the right hand side of (2). For this first we
introduce denotation f”(z) = ¢(x). Then we consider the following quadrature formula

1

/de ~ " ClBlp(ns),0 < t < 1, (4)

0 p=0

in the Sobolev space ng) (0,1). This space is a Hilbert space of classes of all real valued
functions ¢ defined in the interval [0, 1] that differ by a polynomial of degree first and
square integrable with derivative of order two. Here C[f] are the coefficients, x5 are the
nodes of the quadrature formula, N is a natural number.

The following difference is called the error of quadrature formula (4):

o= [ Ear— 3 Clslptes) = [t
0 p=0 —00

where

Cloa{x) (2
U(z) = x_t Zc (z — x5), (5)
€[01](2) is the indicator of the interval [0, 1], 0 is the Dirac delta-function, ¢(z) is the error
functional of quadrature formula (4).

Since the functional (5) defined in the space ng)((), 1) [3], then we have
(l,z*) =0, «a=0,1 (6)

The main aim of the present paper is to construct optimal quadrature formulas in the
sense of Sard of the form (4) in the space Lg) (0, 1) by the Sobolev method for approximate
integration of the Cauchy type singular integral. This means to find the coefficients C[f]
which satisfy the following equality

1125 ) = int Jle[25™) (7)

Thus, in order to construct optimal quadrature formulas in the form (4) in the sense
of Sard we have to consequently solve the following problems.
Problem 1. Find the norm of the error functional (5) of the quadrature formula (4)

in the space ng)*(O, 1).
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Problem 2 Find the coefficients C[3] which satisfy the equality (7).

In the Hilbert spaces one can construct optimal quadrature formulas, optimal inter-
polation formulas, and splines using the Sobolev method. Applying this method in the
different Hilbert spaces optimal quadrature formulas, interpolation formulas, and splines
were constructed, for example, in the works [8—10)|

In the works [1,2,4] for the norm of the error functional the following form was obtained

N

2= | 5 35 OBl zent g f el da +ff12 eVl drdy . (8)

£=0~v=0 5:

Thus Problem 1 is solved for quadrature formulas of the form (4) in the space L (0, 1).

3 The main results

Assume that the nodes x5 of the quadrature formula (4) are fixed. The error functional
(5) satisfies conditions (6). The norm of the error functional ¢(z) is a multidimensional
function with respect to the coefficients C[3] (8 = 0, N). For finding the point of the con-
ditional minimum of the expression (8), under the conditions (6), we apply the Lagrange
method.

We denote C = (C[0], C[1],...,C[N]) and A = (Ao, A1). Consider the function

B(C.) = 417 = 2 Aalba), 1) + M (6(0), ) ).

Equating to zero the partial derivatives of W(C, \) by C[5] (8 =0, N) and Ao, A1, we get
the following system of linear equations

ZC 'l"ﬁ el + Ao+ A1 xg = f(25), (9)
5_0,1,2 N,

ClH]xS = 9o, a=0,1, (10)
Z

where ) ,
|z — zg]
rg) = ———dx, 11
flan = | 15 (1)
1 xa
a — d y 12
e (12)

and Clv|,v=0,1,..., N and A\,, « = 0,1 are unknowns.

The system (9)—(10) has a unique solution and this solution gives the minimum to
|1¢]|* under the conditions (6). The uniqueness of the solution of such type of systems was
discussed in [3,10].

We give the algorithm for solution of system (9)-(10) when the nodes x5 are equally
spaced, i.e., zg = hf3, h = %, N > 1. Here we use similar method suggested by S.L.
Sobolev (3| for finding the coefficients of optimal quadrature formulas in the Sobolev

space ng) (0,1).
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Suppose that C[5] = 0 when f < 0 and § > N. Using the definition of convolution,
we rewrite system (9)-(10) in the following form:

Ga(hp) = C[B] + Pi(hB) = f(hB), B=0,1,...N, (13)
> ClB)- (hB)* = gay a=0,1, (14)
where
Gong) = M7eERD)

Pi(x) is a polynomial of degree 1, sgn(h/3) is the signum function.

Thus we have the following problem.

Problem 3. Find the discrete function C[5] and polynomial Pj(hf3) of degree first
which satisfy the system (13)-(14).

Further we investigate Problem 3. Instead of C[5] we introduce the following functions

o(hB) = Ga(hB) +CIA) (15)
u(hB) = v (hB)+po+p1-(h5). (16)

In such statement the coefficients C[f] are expressed by the function u(hf), i.e. taking
into account

hDsy(hp) * u(hB) = 6(hf3), where

Dy(hf) = 371 19-12V3, |8l =1, (17)
6\/§ - 87 ﬁ = 07

here ¢ = v/3 — 2 and (16) , for the coefficients we have

C[B] = hDy(hB) = u(hp). (18)

Thus, if we find the function u(hf), then the coefficients C[5] will be found from
equality (18). To calculate the convolution (18) it is required to find the representation
of the function u(hS) for all integer values of 5. From equality (13) we get that u(hf) =
= fo(hB) when hS € [0,1],i.e. 5 =0,1,..., N. Now we need to find the representation of
the function u(hf) when § < 0 and 8 > N.

Since C[f] = 0 when hB ¢ [0,1] then C[8] = hDy(hpB) * u(hB) =0, hf5 ¢ [0,1].

Now we calculate the convolution v(hf3) = Go(hf) * 0[5] when § < 0Oand 5 > N
Suppose < 0, then taking into account that Gy (hf) = 1hAIZ 5 | and equality (14), we have

v(hﬁ)———(hﬁ) 9o+~ <h/3> g1 — (hB) - ¥ —p, (19)

Similarly, in the case 8 > N for the convolution v(hf3) = Ga(hf) * C[] we obtain

o(hB) = 55 (B0 — 7 (8 %ar + (h5) - + 1. (20)
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We denote

pr=p -0, py=po—1p (21)

0
ot =p+0", i =po+p. (22)

Taking into account (16), (19) and (20) we get the following problem
Problem 4. Find the solution of the equation

hDy(hpB) *u(hB) =0, hB ¢ [0,1] (23)
having the form:

—L(nB)3g0 + L(hB)2g1 + p (hB) +py, B<
u(hf) = 4 fm(hB), 0< BN, (24)
H(hB)g0 — L(hB)2g1 + pf (hB) + g, B>

Here p,, p;, p¢ and p; are unknown polynomials of degree first with respect to hj.
If we find py, py, pg and p then from (21), (22) we have

1, 1, _
L= 5(1)1 +p7), po= 5(190 + pg ), (25)
0 1 _ 0 1 _
p§)=§(pf—p1), pé)=§(po+—po)- (26)

Unknowns py, py, p¢ and pf can be found from equation (23), using the function
Dy (hf3) defined by (17). Then we obtain explicit form of the function u(hf) and from (18)
we find the coefficients C[3]. Furthermore from (25) we get Py (hf3).

Thus Problem 4 and respectively Problems 3 will be solved.

Then, using the above algorithm, we obtain explicit formulas for coefficients of the
optimal quadrature formula (4). It should be noted that the quadrature formula (4) is
exact for linear function.

The following holds

Theorem 1. Coefficients of the optimal quadrature formulas (4), with equally spaced

nodes in the space LgQ)(O, 1), have the following form

cl] = % H—; (h* — 3¢V (h* + h(q +2))) + %(h2 +2h(g+2)) +pyh(qg+1) +

+(0)(3q +2) — f(h)(12q +5) — g™ (3f(1)(q + 1) + p h(g +2)) +

Ho(g+ )Y q”f(hv)} ,
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5—2
OBl = |6l + 2 0 0) = (120-45)(F(0(5 = ) + S(0(5 -+ 1)
+(6g+4) f(hB) +6(q+2) > ¢ f(hy)+
y=p+2

PO (2 bl 204 12) = 0°02) 40 (o +2) - 30 %
<0+ 1) = 2 (30004 1) + Dinla + 2+ 02+

+pfh(q+2))}, B=1N —1,

CINl = | = Sa(3h(q+ 1)~ 1)+ 22h(q + 1) = g0 + ¢ (prhla +2) -

_3£(0 ><q+1>) pih(g+1) + F(D)(Bg+2) — F(1—h) x

N-2
x(12q +5) + 6(q + 2) ZqN Tf(h }

«2

where

P = K? (27)
Ay

p—li_ - K? (28>

Po = f(07 t)v (29)

1 1 Ay

po = f(Lt) = 590+ 10— % (30)
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A = B2 A2
A = AQ[—Fl—%go(Bl+3Bg+3Bg)+§g1(31+232+33—A3)—

—AJ®%<&<ﬂU—ém+&m)—

—By| — Fy — %90(141 + 34, + 343) + %Lgl(Al +2A5 + Az — B3)—

—B1f(0) — Ay <f(1) — 1390 + igl)

AQ = —AQ — F2 — 1—1290(141 + 3A2 + 3143) + igl(Al + 2A2 + Ag — Bg)—

B0 = A (£ = oo+ )+

+By| — Fi — 1590(B1 + 3By + 3Bs) + ;91(B1 + 2Bs + Bs — As)—
~ s = B (£ - oo+ 30 )|
(

Fio= 6(g+2) S ¢ f(h) — (124 4+ 5)1(0),

Fy, = 6(qg+2) Nf " f(hy) — (12 +5) f(1),

v=0

f(hp) = % ( - %1(%)3 + (5t 4 3)(hB)? — (2t* + 3t + 1,5)(hfB) +

HE 4 ) (6= B3P(-2n b3 — ] + It — ) ).

1—t
g = da:zl—i-tlnT,

x—t

S O~ _

A3 = hQQa B3 = _h2qN+17
q= V3 —2.
Proof. From (24) with 8 = 0 and § = N we immediately obtain (29) and (30), i.e.
po = [(0), (31)
v = 1)~ 0+ 1o~ vt (32
0 12 4 !

From (23), using (17) and (24) for f = —1 and 5 = N + 1, we have
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—pr Y D(hy = h)(hy) +p > D(h(N +7) + h)(hy) =
- - ;Dw RS 1) ;—ngzmm — B)()? -

1
——glszw R)(hv)? gOZD (N +7)+h)(1+hy)* +

gIZD (N ) + )1+ )~ (f(l)—%gwigl)x

o0

XZD (N +7)+h) — Zwa h), (33)

=1

—p; ZD (N +7) + h)(hy) + pf ZD hry = h)(hy) =
y=1
N

:_ZD — h) f(h, t) gOZD (N +7) + h)(hy)? =

o0

1

—;lglzD (N +7) + h)(h)? 12goZD(h7—h)(1+h7)3+

#3003 Dl =+ o~ (f(l)—%gwigl)

o

xZDm h) ZD (N +7)+h). (34)

=1

Thus, for the unknowns p;, p;, py,ps we have obtained a system of linear equations
(31)-(34). Solving this system, we have (27)-(30). This means that we have obtained an
explicit form of the function u(hp).

Further, using (17) and (24), from (18) calculating the convolution hDy(hS3) * u(hp)
for B =0, N, respectively, we obtain results of the theorem. Theorem 1 is proved. 0J

Remark 1. So, the approximate calculation of equality (3) is as follows

R S

=0

4 Conclusion

In the present paper, in the Sobolev space L§2) (0, 1) we constructed the optimal quadra-
ture formula for approximate solution of hypersingular integrals with Cauchy kernel. Here
we found analytical forms for coefficients of the constructed optimal quadrature formulas.
We applied these coefficients to approximate calculation of the Hadamard type singular
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integral. We showed that hypersingular integrals can be calculated with higher accuracy
using the optimal quadrature formulas which are constructed based on Sobolev method.

5
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?HamnuonanbHelil yHEBepCHTeT Y36eKkucTana nMenyu Mupso Yiyrbeka, yamuma YHIBEPCUTETCKAS,
4, Tamkent 100174, Y3bekucran
3Byxapckuii rocyiapeTBeHHbIH yHEIBepcuTerT, yi. Myxammasna Mk6aa, 11, Byxapa 705018,
V3b6eknucran

Pemenne 3amaun Komm st nuddepeHnanibHbIX YPABHEHUN B 9aCTHBIX ITPOU3BOJI-
HBIX THIepbomuecKoro tuma npuseio 2K.Amamapa K BBEJIEHUIO CHHTYIISIPHBIX WHTErPa-
JIOB ocoboro Bujia. [lo3 iHee oHE Oy In/In HA3BaHUE MHTEIPAJIOB B CMbIC/Ie ATaMapa, Uiin
unTerpajoB Anamapa. Kpome ypaBHeHUit rumrepboInIecKoro Tuiia, HHTerpabl AgamMapa
HAXOJIAT MIUPOKOE IIPUMEHEHNE B TEOPUHU YIPYIOCTH, SJIEKTPOIUHAMUKE, adPO/INHAMUKE
U psijie APYTUX BaXKHBIX 0OJIacTell MEXaHUKHU U MaTeMaTu4IecKoil ¢pusnuku. ToaHoe BbIanc-
JIeHWe WHTerpajoB AjamMapa BO3MOXKHO TOJIBKO B UCKJIIOUUTENBHBIX CIYUYaAX, MOITOMY
BOBHUKAET HEOOXOIMMOCTDb B Pa3padoTKe NpUOJIMKEHHBIX METOIOB BbIUUCIeHN. B HACTO-
seit pabore MBI paspaboTaeM ONTUMAJBHBIN AJITOPUTM TPUOIMKEHHOTO BBIUUCIEHUSI
uaTerpaaos Ajgamapa mpu p = 3. 3/1eCh MBI 3aHUMAEMCST HAXOXKJIEHTEM aHATATHIECKOTO
BUIa KO3(MDPUIINEHTOB ONTUMAJILHON KB IpaTyPHONH (POPMYJILI.

Kuttouessbie cioBa: OnrumalibHbie KBaIPATYPHBIE (DOPMYIIBI, SKCTPEMaJibHas (DY HKITHS,
npocrpatacTBo CobosieBa, onTuMabHble KOI(MDMUIUEHTHI, CUHTYJISAPHBIA THTEIDAJT TUIA
A tamapa.

Huruposanue: Axmedos J[.M., Asesos A.X.OurumajbHble KBaJIpaTypHbIE (DOPMYIIBI
sl TUIIEPCUHTYJISIPHBIX HHTerpasos B npocrpancree Cobosesa // IIpobiaemMbl BbIYUCIH-
TeJIbHOI U IpHKIaaHoil Maremaruku. — 2023. — Ne3(49). — C. 1-10.



