RESEARCH ARTICLE \| MARCH 112024
Construction of natural L spline in $W_{2, \sigma}^{(2,1)}$ space
Samandar Babaev © Nurali Olimov; Shafoat Imomova; Bekhruzjon Kuvvatov
(a) Check for updates

AIP Conf. Proc. 3004, 060021 (2024)
https://doi.org/10.1063/5.0199595

CrossMark

Construction of Natural L Spline in $W_{2, \sigma}^{(2,1)}$ Space

Samandar Babaev, ${ }^{1,2, ~ a)}$ Nurali Olimov, 1,2, b) Shafoat Imomova, ${ }^{2}$ and Bekhruzjon Kuvvatov ${ }^{2}$
${ }^{1)}$ V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent 100174, Uzbekistan
${ }^{2)}$ Bukhara State University, 11, M.Ikbol str., Bukhara 200114, Uzbekistan
a)Corresponding author: bssamandar@gmail.com, s.s.boboev@.buxdu.uz b)nuraliolimov8@gmail.com

Abstract

The present paper is devoted to construction of a natural L spline in the Hilbert space $W_{2, \sigma}^{(2,1)}(0,1)$. Here, the interpolation spline is chosen so that its norm becomes minimum in this space and satisfies the interpolation conditions. This work is consecrated to constructing polynomial and exponential L-spline. Explicit formulas for the coefficients of interpolation L-spline in the $W_{2, \sigma}^{(2,1)}(0,1)$ space are obtained.

INTRODUCTION AND THE STATEMENT OF THE PROBLEM

A typical approximation problem is an interpolation problem. The classical method for solving it is to construct an interpolation polynomial. However, polynomials have several disadvantages, such as an apparatus for approximating functions with singularities and functions with not too much smoothness. It is proved that the sequence of Lagrange interpolation polynomials constructed for a specific continuous function by equidistant nodes does not tend to this function as the degree of the polynomial increases. Therefore, in practice, splines are used instead of constructing a high-degree interpolation polynomial to approximate the function sufficiently well. The study of two problems the interpolation of functions by splines and the optimal approximation of linear functionals, where exact solutions are spline functions - led to the formation of algebraic and variational directions in the theory of splines. In the algebraic order, splines are considered as smooth piecewise polynomial functions. In the variational direction, splines are Hilbert or Banach spaces elements that minimise certain functionals. Then the properties of these solutions are studied, i.e. questions of existence, uniqueness, a convergence of splines, and algorithms for their construction.

We present some results obtained by the theory of L-splines. Early contributions to L-spline theory include the work of Ahlberg, Nilson, and Walsh [1], as well as Schultz and Varga (see [2] p. 459). These works concentrated on natural L-splines, which appear as solutions to the corresponding best interpolation problems. In them, the order of approximation of generalised splines was investigated for the first time.

A considerable number of works are devoted to the theory of splines, e.g., J. Ahlberg et al. [1], Ignatev and Pevniy [3], Korneichuk et al. [4], Laurent [5], Subbotin, and Stechkin [6], Bezhaev and Vasilenko [7], Arcangeli et al. [8], Attea [9], Berlinet and Thomas-Agnan [10], Bojanov et al. [11], de Boor [12], Mastroianni, Milovanović [13], Shadimetov [14, 15, 16], Hayotov [17, 18], Boltaev [19, 20, 21], Akhmedov [22, 23] and other latest researches [24].
L.L. Schumaker [2], p. 407, introduced the space of natural hyperbolic splines. Also, in [25], it is shown that hyperbolic ones can be treated as an example of L-splines.

The present work is devoted to constructing polynomial and exponential L-splines. Here we obtain explicit formulas for the coefficients of L-splines in $W_{2, \sigma}^{(2,1)}(0,1)$ space.

We consider the Hilbert space $W_{2, \sigma}^{(2,1)}(0,1)$ equipped with the norm

$$
\begin{equation*}
\|\varphi\|_{W_{2, \sigma}^{(2,1)}}=\left(\int_{0}^{1}\left(\varphi^{\prime \prime}+\sigma \cdot \varphi^{\prime}\right)^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

and $\int_{0}^{1}\left(\varphi^{\prime \prime}+\sigma \cdot \varphi^{\prime}\right)^{2} \mathrm{~d} x<\infty$. Note that equality (1) is a seminorm. Indeed, $\|\varphi\|=0$ if and only if $\varphi(x)=a \cdot e^{-\sigma x}+b$. Here, a and b are unknown real constants, and σ is a non-zero real parameter.

The optimal interpolation formula was constructed in $W_{2, \sigma}^{(2,1)}$ space. Also, the discrete analogue of the differential operator $\frac{d^{2}}{d x^{2}}-\sigma^{2}$ and the extremal function of an error functional of the optimal interpolation formula were found that is needed for the construction process of the optimal interpolation formula(see, [26]). The extremal function of the error functional of the optimal interpolation formula was determined in the space $W_{2, \sigma}^{(2,1)}$ we are investigating [27].

As in this work, variational methods were also used to construct quadrature formulas. The optimal quadrature formulas for numerical integration of integrals in some Hilbert spaces were constructed, and their errors were analysed [28, 29, 30, 31, 32, 33, 34, 35, 36]. Furthermore, optimal quadrature formulas for approximation Fourier integral were constructed in the many works (see, [37, 38, 39, 40, 41]).

We consider the following interpolation problem.
Problem 1. Find a function $S_{2}(x) \in W_{2, \sigma}^{(2,1)}(0,1)$ that gives a minimum to the norm (1) and satisfies the interpolation conditions $S_{2}\left(x_{\beta}\right)=\varphi\left(x_{\beta}\right), \beta=0,1, \ldots, N$, where $x_{\beta} \in[0,1]$ are interpolation nodes and $\varphi\left(x_{\beta}\right)$ are given values of a function.

In pursuance of Theorem 2.2 in [42], page 45, we obtain the following analytical representation of the interpolation spline S_{2} :

$$
\begin{equation*}
S_{2}(x)=\sum_{\gamma=0}^{N} C_{\gamma} G_{2}\left(x-x_{\gamma}\right)+a e^{-\sigma x}+b \tag{2}
\end{equation*}
$$

here $C_{\gamma}(\gamma=0,1, \ldots, N)$ are real numbers. And

$$
\begin{equation*}
G_{2}(x)=\frac{\operatorname{sign}(x)}{4 \sigma^{3}}\left(-2 \sigma x+e^{\sigma x}-e^{-\sigma x}\right) \tag{3}
\end{equation*}
$$

is fundamental solution of the operator $\frac{d^{4}}{d x^{4}}-\sigma^{2} \frac{d^{2}}{d x^{2}}$, i.e., the solution of the equation

$$
\left(\frac{d^{4}}{d x^{4}}-\sigma^{2} \frac{d^{2}}{d x^{2}}\right) G_{2}(x)=\delta(x)
$$

where $\delta(x)$ is Dirac's delta-function.
It should be noted that equality (2) was considered in the works [3, 5, 8]. It is known that (see, for example, [3, $5,8]$) a solution S_{2} of the form (2) of Problem 1 exists and unique for $N \geq 1$, and the coefficients C_{γ}, a and b of the interpolation spline $S_{2}(x)$ are defined by the system of $(N+3)$ linear equations

$$
\begin{align*}
\sum_{\gamma=0}^{N} C_{\gamma} G_{2}\left(x_{\beta}-x_{\gamma}\right)+a \cdot e^{-\sigma x_{\beta}}+b & =\varphi\left(x_{\beta}\right), \beta=0,1, \ldots, N \tag{4}\\
\sum_{\gamma=0}^{N} C_{\gamma} e^{-\sigma x_{\gamma}} & =0 \tag{5}\\
\sum_{\gamma=0}^{N} C_{\gamma} & =0 \tag{6}
\end{align*}
$$

The main goal of the following sections is to solve Problem 1, i.e., we solve system (4)-(6) for equally spaced nodes $x_{\beta}=h \beta, \beta=0,1, \ldots, N, h=1 / N$ and find analytical formulas for the coefficients C_{γ}, a and b of the spline $S_{2}(x)$.

The structure of the paper is as follows. Section 2 gives an algorithm for calculating the coefficients of the interpolation spline, and some properties of the discrete argument functions needed for this implementation are mentioned. Section 3 is devoted to the calculation of optimal coefficients using the algorithm which is given in Section 2.

ALGORITHM FOR COMPUTATION OF COEFFICIENTS OF THE INTERPOLATION SPLINE (2)

We use Sobolev's method [43, 44] to find optimal quadrature formula coefficients in $L_{2}^{(m)}$ space.
Below we use the notion of discrete argument functions and operations on them. The theory of discrete argument functions is given in [43, 44]. For completeness, we give some definitions of functions of discrete argument.

Definition 1. The function $\varphi(h \beta)$ is a function of discrete argument if it is given on some set of integer values of β.

Definition 2. The inner product of two discrete argument functions $\varphi(h \beta)$ and $\psi(h \beta)$ is given by

$$
[\varphi(h \beta), \psi(h \beta)]=\sum_{\beta=-\infty}^{\infty} \varphi(h \beta) \cdot \psi(h \beta)
$$

if the series on the right-hand side absolutely converges.
Definition 3. The convolution of two functions $\varphi(h \beta)$ and $\psi(h \beta)$ is the inner product

$$
\varphi(h \beta) * \psi(h \beta)=[\varphi(h \gamma), \psi(h \beta-h \gamma)]=\sum_{\gamma=-\infty}^{\infty} \varphi(h \gamma) \cdot \psi(h \beta-h \gamma)
$$

Now we turn to our problem.
Suppose that $C_{\beta}=0$ when $\beta<0$ and $\beta>N$. Using properties of discrete argument functions (see, [43, 44]) we rewrite the system (4)-(6) in the convolution form

$$
\begin{align*}
G_{2}(h \beta) * C_{\beta}+a \cdot e^{-\sigma h \beta}+b & =\varphi(h \beta), \beta=0,1, \ldots, N, \tag{7}\\
\sum_{\gamma=0}^{N} C_{\gamma} e^{-\sigma h \gamma} & =0 \tag{8}\\
\sum_{\gamma=0}^{N} C_{\gamma} & =0 \tag{9}
\end{align*}
$$

The problem of finding the solution of the system (7)-(9) is equivalent to Problem 1.
Further, instead of C_{β} we input the following functions

$$
\begin{gather*}
v_{2}(h \beta)=G_{2}(h \beta) * C_{\beta}, \tag{10}\\
u_{2}(h \beta)=v_{2}(h \beta)+a \cdot e^{-\sigma h \beta}+b . \tag{11}
\end{gather*}
$$

In this problem, C_{β} can be represented by $u_{2}(h \beta)$ as follows

$$
\begin{equation*}
C_{\beta}=D_{2}(h \beta) * u_{2}(h \beta) \tag{12}
\end{equation*}
$$

Thus, if we find $u_{2}(h \beta)$, then from (12) we can obtained the coefficients C_{β}. To calculate the convolution (12), the values of the function $u_{2}(h \beta)$ in all integers β are needed. From equality (7), we get $u_{2}(h \beta)=\varphi(h \beta)$ when $h \beta \in[0,1]$. Now, we need the representation of the function $u_{2}(h \beta)$ when $\beta<0$ and $\beta>N$. Since, $C_{\beta}=0$ for $h \beta \notin[0,1]$, then we have $C_{\beta}=D_{2}(h \beta) * u_{2}(h \beta)=0, h \beta \notin[0,1]$.

Now we calculate the convolution $v_{2}(h \beta)=G_{2}(h \beta) * C_{\beta}$ for $\beta \leq 0$ and $\beta \geq N$.
Taking into account (3), (4), (5) and (6), we have

$$
\begin{aligned}
v_{2}(h \beta) & =\sum_{\gamma=-\infty}^{\infty} C_{\gamma} \cdot G_{2}(h \beta-h \gamma) \\
& =\sum_{\gamma=0}^{N} C_{\gamma} \frac{\operatorname{sign}(h \beta-h \gamma)}{4 \sigma^{3}}\left(-2 \sigma(h \beta-h \gamma)+e^{\sigma(h \beta-h \gamma)}-e^{-\sigma(h \beta-h \gamma)}\right)
\end{aligned}
$$

Firstly, we consider for $\beta \leq 0$

$$
\begin{aligned}
v_{2}(h \beta) & =\frac{h \beta}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma}-\frac{h}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma} \gamma-\frac{e^{\sigma h \beta}}{4 \sigma^{3}} \sum_{\gamma=0}^{N} C_{\gamma} e^{-\sigma h \gamma}+\frac{e^{-\sigma h \beta}}{4 \sigma^{3}} \sum_{\gamma=0}^{N} C_{\gamma} e^{\sigma h \gamma} \\
& =\frac{-h}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma} \gamma+\frac{e^{-\sigma h \beta}}{4 \sigma^{3}} \cdot \sum_{\gamma=0}^{N} C_{\gamma} e^{\sigma h \gamma}
\end{aligned}
$$

Similarly, in the case $\beta \geq N$ we get the following expression

$$
v_{2}(h \beta)=\frac{h}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma} \gamma-\frac{e^{-\sigma h \beta}}{4 \sigma^{3}} \cdot \sum_{\gamma=0}^{N} C_{\gamma} e^{\sigma h \gamma} .
$$

Now we denote

$$
\begin{array}{ll}
a^{-}=a+\frac{1}{4 \sigma^{3}} \sum_{\gamma=0}^{N} C_{\gamma} e^{\sigma h \gamma}, & b^{-}=b-\frac{h}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma} \gamma \\
a^{+}=a-\frac{1}{4 \sigma^{3}} \sum_{\gamma=0}^{N} C_{\gamma} e^{\sigma h \gamma}, & b^{+}=b+\frac{h}{2 \sigma^{2}} \sum_{\gamma=0}^{N} C_{\gamma} \gamma .
\end{array}
$$

Consequently, we get the following form of the function $u_{2}(h \beta)$

$$
u_{2}(h \beta)=\left\{\begin{array}{lr}
e^{-\sigma h \beta} a^{-}+b^{-}, & \beta \leq 0 \tag{13}\\
\varphi(h \beta), & 0 \leq \beta \leq N \\
e^{-\sigma h \beta} a^{+}+b^{+}, & \beta \geq N
\end{array}\right.
$$

From the last expression, we get the system of two linear equations

$$
\begin{aligned}
& \text { for } \beta=0, \quad a^{-}+b^{-}=\varphi(0), \\
& \text { for } \beta=N, \quad e^{-\sigma} a^{+}+b^{+}=\varphi(1),
\end{aligned}
$$

and we obtain

$$
\begin{gathered}
b^{-}=\varphi(0)-a^{-}, \\
b^{+}=\varphi(1)-e^{-\sigma} a^{+}
\end{gathered}
$$

Thus, we rewrite expression (13) in the form

$$
u_{2}(h \beta)=\left\{\begin{array}{lr}
e^{-\sigma h \beta} a^{-}+\varphi(0)-a^{-}, & \beta \leq 0 \tag{14}\\
\varphi(h \beta) & 0 \leq \beta \leq N \\
e^{-\sigma h \beta} a^{+}+\varphi(1)-e^{-\sigma} a^{+}, & \beta \geq N
\end{array}\right.
$$

here a^{-}and a^{+}are unknown constants. If we find a^{-}and a^{+}then we determine the function $u_{2}(h \beta)$.

THE COEFFICIENTS OF THE INTERPOLATION SPLINE

Problem 2. Find a function $u_{2}(h \beta)$ satisfying the following equation

$$
D_{2}(h \beta) * u_{2}(h \beta)=0, \quad h \beta \notin[0,1] .
$$

Where $D_{2}(h \beta)$ is the discrete analogue of the differential operator $\frac{d^{4}}{d x^{4}}-\sigma^{2} \frac{d^{2}}{d x^{2}}$. The discrete argument function $D_{2}(h \beta)$ satisfies the next equation

$$
\begin{equation*}
D_{2}(h \beta) * G_{2}(h \beta)=\delta_{d}(h \beta), \tag{15}
\end{equation*}
$$

where $\delta_{d}(h \beta)=\left\{\begin{array}{l}0, \quad \beta \neq 0, \\ 1, \quad \beta=0\end{array}\right.$ is the discrete delta function.
Theorem 1. The discrete analogue $D_{2}(h \beta)$ of the differential operator $\frac{d^{4}}{d x^{4}}-\sigma^{2} \frac{d^{2}}{d x^{2}}$ satisfying (15) has the form

$$
D_{2}(h \beta)=K \begin{cases}A_{1} \lambda_{1}^{|\beta|-1}, & |\beta| \geq 2 \tag{16}\\ -e^{\sigma h}+A_{1}, & |\beta|=1 \\ \frac{A_{1}}{\lambda_{1}}+\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}, & \beta=0\end{cases}
$$

where

$$
\begin{gathered}
A_{1}=\frac{e^{\sigma h} \lambda_{1}^{4}-\left(e^{\sigma h}+1\right)^{2} \lambda_{1}^{3}+2\left(e^{2 \sigma h}+e^{\sigma h}+1\right) \lambda_{1}^{2}-\left(e^{\sigma h}+1\right)^{2} \lambda_{1}+e^{\sigma h}}{\lambda_{1}^{2}-1} \\
K=\frac{2 \sigma^{3}}{2 \sigma h e^{\sigma h}+1-e^{2 \sigma h}}
\end{gathered}
$$

$$
\begin{gathered}
P=\frac{-2 \sigma h-2 \sigma h e^{2 \sigma h}-2+2 e^{2 \sigma h}}{2 \sigma h e^{\sigma h}+1-e^{2 \sigma h}}, \\
\lambda_{1}=\frac{\sigma h\left(e^{2 \sigma h}+1\right)-e^{2 \sigma h}+1-\left(e^{\sigma h}-1\right) \sqrt{\left(e^{\sigma h}+1\right)^{2}(\sigma h)^{2}-2 \sigma h\left(e^{2 \sigma h}-1\right)}}{-e^{2 \sigma h}+2 \sigma h e^{\sigma h}+1},
\end{gathered}
$$

$\left|\lambda_{1}\right|<1$.
Theorem 2. The discrete analogue $D_{2}(h \beta)$ of the differential operator $\frac{d^{4}}{d x^{4}}-\sigma^{2} \frac{d^{2}}{d x^{2}}$ is satisfies the following equalities

1) $D_{2}(h \beta) * e^{\sigma h \beta}=0$,
2) $D_{2}(h \beta) * e^{-\sigma h \beta}=0$,
3) $D_{2}(h \beta) * 1=0$,
4) $D_{2}(h \beta) *(h \beta)=0$.

Theorem 1 and 2 were proved in the works [45].
Now, we solve Problem 2 using equations (14) and (16)

$$
\begin{aligned}
D_{2}(h \beta) * u_{2}(h \beta)= & \sum_{\gamma=-\infty}^{\infty} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma)=\sum_{\gamma=-\infty}^{-1} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma) \\
& +\sum_{\gamma=0}^{N} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma)+\sum_{\gamma=N+1}^{\infty} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma) \\
& =\sum_{\gamma=1}^{\infty} D_{2}(h \beta+h \gamma) \cdot\left[a^{-} \cdot e^{\sigma h \gamma}+\varphi(0)-a^{-}\right]+\sum_{\gamma=0}^{N} D_{2}(h \beta-h \gamma) \cdot \varphi(h \gamma) \\
& +\sum_{\gamma=1}^{\infty} D_{2}(h(N+\gamma-\beta)) \cdot\left[a^{+} \cdot e^{-\sigma h(N+\gamma)}+\varphi(1)-e^{-\sigma} a^{+}\right] .
\end{aligned}
$$

Then, for $\beta=-1$ and by Theorem 1, Theorem 2 and last expression we obtain the equation

$$
\begin{align*}
& a^{-}\left[\left(e^{\sigma h}-1\right)\left(P e^{\sigma h}+1+e^{\sigma h}\right)+\frac{A_{1}}{\lambda_{1}}\left(\frac{e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{1}{1-\lambda_{1}}\right)\right]+a^{+} A_{1} e^{-\sigma} \lambda_{1}^{N+1}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right) \tag{17}\\
& =-\varphi(0)\left(P e^{\sigma h}+1+e^{2 \sigma h}+\frac{A_{1}}{\lambda_{1}\left(1-\lambda_{1}\right)}\right)-\frac{\varphi(1) A_{1} \lambda_{1}^{N+1}}{1-\lambda_{1}}-A_{1} \sum_{\gamma=0}^{N} \lambda_{1}^{\gamma} \varphi(h \gamma) .
\end{align*}
$$

Similarly, for $\beta=N+1$ we get the following equation

$$
\begin{align*}
& a^{-}\left[A_{1} \lambda_{1}^{N+1}\left(\frac{e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{1}{1-\lambda_{1}}\right)\right]+a^{+}\left[e^{-\sigma}\left(\left(1-e^{\sigma h}\right)\left(P+1+e^{\sigma h}\right)+\frac{A_{1}}{\lambda_{1}}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right)\right)\right] \tag{18}\\
& =-\frac{\varphi(0) A_{1} \lambda_{1}^{N+1}}{1-\lambda_{1}}-\varphi(1)\left(1+e^{2 \sigma h}+P e^{\sigma h}+\frac{A_{1}}{\lambda_{1}\left(1-\lambda_{1}\right)}\right)-A_{1} \lambda_{1}^{N} \sum_{\gamma=0}^{N} \lambda_{1}^{-\gamma} \varphi(h \gamma) .
\end{align*}
$$

Thereby we have got a system of linear equations (17) and (18), and we rewrite it as follow

$$
\begin{align*}
& B_{1} a^{-}+B_{2} a^{+}=T_{1} \tag{19}\\
& B_{3} a^{-}+B_{4} a^{+}=T_{2}
\end{align*}
$$

Here

$$
\begin{aligned}
B_{1} & =\left(e^{\sigma h}-1\right)\left(P e^{\sigma h}+1+e^{\sigma h}\right)+\frac{A_{1}}{\lambda_{1}}\left(\frac{e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{1}{1-\lambda_{1}}\right) \\
B_{2} & =A_{1} e^{-\sigma} \lambda_{1}^{N+1}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right) \\
T_{1} & =-\varphi(0)\left(P e^{\sigma h}+1+e^{2 \sigma h}+\frac{A_{1}}{\lambda_{1}\left(1-\lambda_{1}\right)}\right)-\frac{\varphi(1) A_{1} \lambda_{1}^{N+1}}{1-\lambda_{1}}-A_{1} \sum_{\gamma=0}^{N} \lambda_{1}^{\gamma} \varphi(h \gamma), \\
B_{3} & =A_{1} \lambda_{1}^{N+1}\left(\frac{e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{1}{1-\lambda_{1}}\right) \\
B_{4} & =e^{-\sigma}\left(\left(1-e^{\sigma h}\right)\left(P+1+e^{\sigma h}\right)+\frac{A_{1}}{\lambda_{1}}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right)\right), \\
T_{2} & =-\frac{\varphi(0) A_{1} \lambda_{1}^{N+1}}{1-\lambda_{1}}-\varphi(1)\left(1+e^{2 \sigma h}+P e^{\sigma h}+\frac{A_{1}}{\lambda_{1}\left(1-\lambda_{1}\right)}\right)-A_{1} \lambda_{1}^{N} \sum_{\gamma=0}^{N} \lambda_{1}^{-\gamma} \varphi(h \gamma) .
\end{aligned}
$$

We find a^{-}and a^{+}from the system of equations (19)

$$
\begin{equation*}
a^{-}=\frac{T_{1} B_{4}-T_{2} B_{2}}{B_{1} B_{4}-B_{2} B_{3}}, a^{+}=\frac{T_{2} B_{1}-T_{1} B_{3}}{B_{1} B_{4}-B_{2} B_{3}} \tag{20}
\end{equation*}
$$

Thus, the discrete function $u_{2}(h \beta)$ is fully determined from (14).
Now we find C_{β} from the equality $C_{\beta}=D_{2}(h \beta) * u_{2}(h \beta)$, for $0 \leq \beta \leq N$

$$
C_{\beta}=\sum_{\gamma=-\infty}^{\infty} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma)
$$

From here for $\beta=0$

$$
\begin{gathered}
C_{0}=\sum_{\gamma=-\infty}^{\infty} D_{2}(-h \gamma) \cdot u_{2}(h \gamma)=\sum_{\gamma=-\infty}^{-1} D_{2}(h \gamma) \cdot u_{2}(h \gamma)+\sum_{\gamma=0}^{N} D_{2}(h \gamma) \cdot u_{2}(h \gamma)+\sum_{\gamma=N+1}^{\infty} D_{2}(h \gamma) \cdot u_{2}(h \gamma) \\
=\sum_{\gamma=1}^{\infty} D_{2}(h \gamma) \cdot u_{2}(-h \gamma)+\sum_{\gamma=0}^{N} D_{2}(h \gamma) \cdot u_{2}(h \gamma)+\sum_{\gamma=1}^{\infty} D_{2}(h(\gamma+N)) \cdot u_{2}(h(\gamma+N))
\end{gathered}
$$

So

$$
\begin{aligned}
C_{0}= & K\left[a^{-}\left(e^{\sigma h}-e^{2 \sigma h}+\frac{A_{1} e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{A_{1}}{1-\lambda_{1}}\right)+\varphi(0)\left(\frac{A_{1}}{1-\lambda_{1}}+1+e^{\sigma h}+e^{2 \sigma h}+P e^{\sigma h}\right)\right. \\
& \left.-\varphi(h) e^{\sigma h}+\frac{A_{1}}{\lambda_{1}} \sum_{\gamma=0}^{N} \lambda_{1}^{\gamma} \varphi(h \gamma)+a^{+}\left(\frac{e^{-\sigma} A_{1} \lambda_{1}^{N}}{e^{\sigma h}-\lambda_{1}}-\frac{e^{-\sigma} A_{1} \lambda_{1}^{N}}{1-\lambda_{1}}\right)+\varphi(1) \frac{A_{1} \lambda_{1}^{N}}{1-\lambda_{1}}\right] .
\end{aligned}
$$

For simplicity, we determine

$$
M_{1}=a^{-}\left(\frac{A_{1} e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{A_{1}}{1-\lambda_{1}}\right)+\frac{\varphi(0) A_{1}}{1-\lambda_{1}}
$$

and

$$
N_{1}=a^{+}\left(\frac{e^{-\sigma} A_{1}}{e^{\sigma h}-\lambda_{1}}-\frac{e^{-\sigma} A_{1}}{1-\lambda_{1}}\right)+\frac{\varphi(1) A_{1}}{1-\lambda_{1}}
$$

Thereby

$$
\begin{equation*}
C_{0}=K\left[M_{1}+\lambda_{1}^{N} N_{1}+a^{-}\left(e^{\sigma h}-e^{2 \sigma h}\right)+\varphi(0)\left(1+e^{\sigma h}+e^{2 \sigma h}+P e^{\sigma h}\right)-\varphi(h) e^{\sigma h}+\frac{A_{1}}{\lambda_{1}} \sum_{\gamma=0}^{N} \lambda_{1}^{\gamma} \varphi(h \gamma)\right] \tag{21}
\end{equation*}
$$

Now we calculate the coefficients for $\beta=1,2, \ldots, N-1$

$$
\begin{gathered}
C_{\beta}=\sum_{\gamma=1}^{\infty} D_{2}(h \beta+h \gamma) \cdot u_{2}(-h \gamma)+\sum_{\gamma=0}^{N} D_{2}(h \beta-h \gamma) \cdot u_{2}(h \gamma)+\sum_{\gamma=1}^{\infty} D_{2}(h(\gamma+N-\beta)) u_{2}(h(\gamma+N)) \\
=K \cdot\left(A_{1} \lambda_{1}^{\beta-1} \sum_{\gamma=1}^{\infty} \lambda_{1}^{\gamma}\left(a^{-}\left(e^{\sigma h \gamma}-1\right)+\varphi(0)\right)+\sum_{\gamma=0}^{\beta-2} A_{1} \cdot \lambda_{1}^{\beta-\gamma-1} \cdot \varphi(h \gamma)+\left(-e^{\sigma h}+A_{1}\right) \varphi(h(\beta-1))\right. \\
+\left(\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}+\frac{A_{1}}{\lambda_{1}}\right) \cdot \varphi(h \beta)+\left(-e^{\sigma h}+A_{1}\right) \varphi(h(\beta+1)) \\
\left.+\sum_{\gamma=\beta+2}^{N} A_{1} \lambda_{1}^{\gamma-\beta-1} \varphi(h \gamma)+A_{1} \lambda_{1}^{N-\beta-1} \sum_{\gamma=1}^{\infty} \lambda_{1}^{\gamma} \cdot\left(a^{+} \cdot\left(e^{-\sigma h(N+\gamma)}-e^{-\sigma}\right)+\varphi(1)\right)\right) \\
=K\left[\lambda_{1}^{\beta}\left(A_{1} a^{-}\left(\frac{e^{\sigma h}}{1-e^{\sigma h} \lambda_{1}} \frac{1}{1-\lambda_{1}}\right)+\varphi(0) \frac{A_{1}}{1-\lambda_{1}}\right)-e^{\sigma h}(\varphi(h(\beta-1))+\varphi(h(\beta+1)))\right. \\
+\varphi(h \beta)\left(\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}\right)+\sum_{\gamma=0}^{N} A_{1} \lambda_{1}^{|\beta-\gamma|-1} \cdot \varphi(h \gamma) \\
\left.+\lambda^{N-\beta}\left(A_{1} a^{+} e^{-\sigma}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right)+\varphi(1) \frac{A_{1}}{1-\lambda_{1}}\right)\right]
\end{gathered}
$$

Accordingly

$$
\begin{align*}
C_{\beta}= & K\left[\lambda_{1}^{\beta} M_{1}+\lambda_{1}^{N-\beta} N_{1}-e^{\sigma h}(\varphi(h(\beta-1))+\varphi(h(\beta+1)))+\varphi(h \beta)\left(\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}\right)\right. \tag{22}\\
& \left.+\frac{A_{1}}{\lambda_{1}} \sum_{\gamma=0}^{N} \lambda_{1}^{|\beta-\gamma|} \cdot \varphi(h \gamma)\right] .
\end{align*}
$$

Finally, we calculate for $\beta=N$

$$
\begin{gathered}
C_{N}=\sum_{\gamma=1}^{\infty} D_{2}(h \beta+h \gamma) u_{2}(-h \gamma)+\sum_{\gamma=0}^{N} D_{2}(h \beta-h \gamma) u_{2}(h \gamma)+\sum_{\gamma=1}^{\infty} D_{2}(h(N+\gamma-\beta)) u_{2}(h(N+\gamma)) \\
=K\left[A_{1} \lambda_{1}^{N} a^{-}\left(\frac{e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{1}{1-\lambda_{1}}\right)+\frac{\varphi(0) A_{1} \lambda_{1}^{N}}{1-\lambda_{1}}+\left(\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}\right) \varphi(1)+A_{1} \lambda_{1}^{N-1} \sum_{\gamma=0}^{N} \lambda_{1}^{-\gamma} \varphi(h \gamma)\right. \\
\\
\left.-e^{\sigma h}\left(\varphi(1-h)+a^{+} e^{-\sigma}\left(e^{-\sigma h}-1\right)+\varphi(1)\right)+e^{-\sigma} a^{+} A_{1}\left(\frac{1}{e^{\sigma h}-\lambda_{1}}-\frac{1}{1-\lambda_{1}}\right)+\varphi(1) \frac{A_{1}}{1-\lambda_{1}}\right] .
\end{gathered}
$$

Thus, we obtain
$C_{N}=K\left[\lambda_{1}^{N} M_{1}+N_{1}+\left(1+e^{\sigma h}+e^{2 \sigma h}+P e^{\sigma h}\right) \varphi(1)+A_{1} \lambda_{1}^{N-1} \sum_{\gamma=0}^{N} \lambda_{1}^{-\gamma} \varphi(h \gamma)-e^{\sigma h}\left(\varphi(1-h)+a^{+} e^{-\sigma}\left(e^{-\sigma h}-1\right)\right)\right]$.
Consequently, the following is proven.
Theorem 3. Coefficients of the optimal interpolation formulas (2) with equally spaced nodes $x_{\beta}=h \beta$ in the space $W_{2, \sigma}^{(2,1)}(0,1)$ have the following form

$$
\begin{aligned}
C_{0} & =K\left[M_{1}+\lambda_{1}^{N} N_{1}+a^{-}\left(e^{\sigma h}-e^{2 \sigma h}\right)+\varphi(0)\left(1+e^{\sigma h}+e^{2 \sigma h}+P e^{\sigma h}\right)-\varphi(h) e^{\sigma h}+\frac{A_{1}}{\lambda_{1}} \sum_{\gamma=0}^{N} \lambda_{1}^{\gamma} \varphi(h \gamma)\right] \\
C_{\beta} & =K\left[\lambda_{1}^{\beta} M_{1}+\lambda_{1}^{N-\beta} N_{1}-e^{\sigma h}(\varphi(h(\beta-1))+\varphi(h(\beta+1)))+\varphi(h \beta)\left(\left(1+e^{\sigma h}\right)^{2}+P e^{\sigma h}\right)+\frac{A_{1}}{\lambda_{1}} \sum_{\gamma=0}^{N} \lambda_{1}^{|\beta-\gamma|} \varphi(h \gamma)\right] \\
\beta & =1,2, \ldots, N-1, \\
C_{N} & =K\left[\lambda_{1}^{N} M_{1}+N_{1}+\left(1+e^{\sigma h}+e^{2 \sigma h}+P e^{\sigma h}\right) \varphi(1)+A_{1} \lambda_{1}^{N-1} \sum_{\gamma=0}^{N} \lambda_{1}^{-\gamma} \varphi(h \gamma)-e^{\sigma h}\left(\varphi(1-h)+a^{+} e^{-\sigma}\left(e^{-\sigma h}-1\right)\right)\right]
\end{aligned}
$$

here a^{-}and a^{+}are known from the expression (20), and

$$
\begin{aligned}
M_{1} & =a^{-}\left(\frac{A_{1} e^{\sigma h}}{1-\lambda_{1} e^{\sigma h}}-\frac{A_{1}}{1-\lambda_{1}}\right)+\frac{\varphi(0) A_{1}}{1-\lambda_{1}} \\
N_{1} & =a^{+}\left(\frac{e^{-\sigma} A_{1}}{e^{\sigma h}-\lambda_{1}}-\frac{e^{-\sigma} A_{1}}{1-\lambda_{1}}\right)+\frac{\varphi(1) A_{1}}{1-\lambda_{1}}
\end{aligned}
$$

CONCLUSION

Thus, polynomial and exponential L-spline was constructed in this work. A system of linear equations was obtained for the coefficients of the interpolation spline formula. The discrete analogue of the fourth-order differential operator depending on the σ parameter was used to solve this system of linear equations. The explicit form for the coefficients of L-spline (2) in $W_{2, \sigma}^{(2,1)}(0,1)$ space were obtained.

ACKNOWLEDGMENTS

The present work has been done at Bukhara State University and V.I. Romanovsky Institute of Mathematics, and we are very thankful to Professor Abdullo Hayotov for kindly helping to improve this paper.

REFERENCES

1. J. Ahlberg, E.N.Nilson, and J.L.Walsh, The theory of splines and their applications. (1967).
2. L. Schumaker, Spline functions: basic theory., Vol. 1 (Cambridge university press, 2007) p. 600.
3. M.I.Ignatev and A.B.Pevniy, Natural splines of many variables. (Nauka, Leningrad (in Russian), 1991) p. 127.
4. N.P.Korneichuk, V.F.Babenko, and A.A.Ligun, Extremal properties polynomials and splines., Vol. 1 (Naukovo Dumka, Kiyev (in Russian), 1992) p. 304.
5. P.J.Laurent, Approximation and optimization., Vol. 1 (Mir, Moscow (in Russian), 1975) p. 496.
6. S.B.Stechkin and J.N.Subbotin, Splines in computational mathematics., Vol. 1 (Nauka, Moscow(in Russian), 1976) p. 248.
7. A.Yu.Bezhaev and V.A.Vasilenko, Variational theory of splines., Vol. 1 (Springer., 2001) p. 280.
8. R.Arcangeli, M. de Silanes, and J.J.Torrens, Multidimensional minimizing splines., Vol. 1 (Boston: Kluwer Academic publishers., 2004).
9. M.Attea, Hilbertian kernels and spline functions, Studies in Computational Matematics, Vol. 1 (C. Brezinski and L. Wuytack eds, NorthHolland., 1992).
10. A.Berlinet and C.Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics., Vol. 1 (Kluwer Academic Publisher., 2004).
11. B. Bojanov, H. Hakopian, and A. Sahakian, Spline functions and multivariate interpolations., Vol. 1 (Kluwer, Dordrecht., 1993).
12. C. Boor, A practical guide to splines., Vol. 1 (Springer-Verlag., 1978).
13. G. Mastroianni and G. Milovanović, Interpolation Processes. Basic Theory and Applications., Vol. 1 (Springer Monographs in Mathematics., 2008).
14. Kh.M.Shadimetov and A.R.Hayotov, "Construction of interpolation splines minimizing semi-norm in $W_{2}^{(m, m-1)}(0,1)$ space," BIT Numer Math 53, 545-563 (2013).
15. A.R.Hayotov, G.V.Milovanović, and Kh.M.Shadimetov, "Interpolation splines minimizing a semi-norm," Calcolo 51, 245-260 (2014)
16. Kh. M. Shadimetov and A. R. Hayotov, Optimal approximation of error functionals of quadrature and interpolation formulas in spaces of differentiable functions. (Muhr press, Tashkent, 2022) p. 246, [in Russian]
17. A.R.Hayotov, "Construction of interpolation splines minimizing the semi-norm in the space $K_{2}\left(P_{m}\right)$," Journal of Siberian Federal University. Mathematics and Physics 11, 383-396 (2018).
18. S.S.Babaev and A.R.Hayotov, "Optimal interpolation formulas in the space $W_{2}^{(m, m-1)}$," Calcolo 56 (2019), https://doi.org/10.1007/s10092-019-0320-9.
19. Kh. M. Shadimetov and A. K. Boltaev, "An exponential-trigonometric spline minimizing a semi-norm in a hilbert space." Advances in Differential Equations, Springer 352, 1-16 (2021).
20. A. K. Boltaev, A. R. Hayotov, and Kh. M. Shadimetov, "Construction of optimal quadrature formulas exact for exponentional-trigonometric functions by Sobolev's method." Acta Mathematica Sinica, English series 7(37), 1066-1088 (2021).
21. A.Boltaev and D.Akhmedov, "On an exponential-trigonometric natural interpolation spline." AIP Conference Proceedings 2365, 020023 (2021), https://doi.org/10.1063/5.0057116.
22. Kh.M. Shadimetov and D.M. Akhmedov, "Approximate solution of a singular integral equation using the sobolev method," Lobachevskii Journal of Mathematics 43(2), 496-505 (2022).
23. D.M. Akhmedov and Kh.M. Shadimetov, "Optimal quadrature formulas for approximate solution of the first kind singular integral equation with cauchy kernel," Studia Universitatis Babes-Bolyai Mathematica 67(3), 633-651 (2022).
24. S. Babaev, J. Davronov, A.Abdullaev, and S.Polvonov, "Optimal interpolation formulas exact for trigonometric functions," AIP Conference Proceedings 2781, 020064 (2023), https://doi.org/10.1063/5.0144754.
25. L. Schumaker, "On hyperbolic splines." Journal of Approximation Theory 38, 144-166 (1983).
26. S.S.Babaev, J.R.Davronov, and N.H.Mamatova, "On an optimal interpolation formula in the space $W_{2, \sigma}^{(1,0)}$," Bulletin of the Institute of Mathematics , 1-12 (2020).
27. A. Hayotov, S. Babaev, N.Olimov, and Sh.Imomova, "The error functional of optimal interpolation formulas in $W_{2, \sigma}^{(2,1)}$ space," AIP Conference Proceedings 2781, 020044 (2023), https://doi.org/10.1063/5.0144752.
28. A. Hayotov, G. Milovanović, and Kh. Shadimetov, "Optimal quadratures in the sense of Sard in a Hilbert space," Applied Mathematics and Computation 259, 637-653 (2015).
29. A.R.Hayotov, G.V.Milovanović, and Kh.M.Shadimetov, "On an optimal quadrature formula in the sense of Sard," Numerical Algorithms 57, 487-510 (2011).
30. Kh. Shadimetov, Optimal lattice quadrature and cubature formulas in Sobolev spaces (Tashkent, Uzbekistan, 2019).
31. Kh. Shadimetov and A. Hayotov, "Optimal quadrature formulas with positive coefficients in $L_{2}^{(m)}(0,1)$ space," Journal of Computational and Applied Mathematics 235, 1114-1128 (2011).
32. Kh. Shadimetov and A. Hayotov, "Optimal quadrature formulas in the sense of Sard in $W_{2}^{(m, m-1)}(0,1)$ space," Calcolo 51, 211-243 (2014).
33. O. I. Jalolov, "Weight optimal order of convergence cubature formulas in Sobolev space," AIP Conference Proceedings 2365, 020014 (2021), https://doi.org/10.1063/5.0057015.
34. A. R. Hayotov and U. N. Khayriev, "Construction of an Optimal Quadrature Formula in the Hilbert Space of Periodic Functions." Lobachevskii Journal of Mathematics. 11(43), 3151-3160 (2022).
35. Kh. Shadimetov, A. R. Hayotov, and B. I. Bozarov, "Optimal quadrature formulas for oscillatory integrals in the Sobolev space," Journal of inequalities and applications. Springer. 103, 1—21 (2022).
36. Kh. M. Shadimetov and N. H. Mamatova, "Optimal quadrature formulas with derivatives in a periodic space," AIP Conference Proceedings 2365(1), 020030 (2021), https://doi.org/10.1063/5.0056962.
37. A. R. Hayotov and S. S. Babaev, "Optimal quadrature formulas for computing of Fourier integrals in $W_{2}^{(m, m-1)}$ space," AIP Conference Proceedings 2365, 020021 (2021), https://doi.org/10.1063/5.0057127.
38. A. Hayotov, S. Jeon, and C.-O. Lee, "On an optimal quadrature formula for approximation of Fourier integrals in the space $L_{2}^{(1)}$." Journal of Computational and Applied Mathematics 372, 112713 (2020).
39. A. Hayotov and B. Bozarov, "Optimal quadrature formulas with the trigonometric weight in the Sobolev space," AIP Conference Proceedings 2365, 020022 (2021), https://doi.org/10.1063/5.0056954.
40. A. Hayotov and R. Rasulov, "Improvement of the accuracy for the Euler-Maclaurin quadrature formulas," AIP Conference Proceedings 2365, 020035 (2021), https://doi.org/10.1063/5.0056956.
41. A. Hayotov and R. Rasulov, "The order of convergence of an optimal quadrature formula with derivative in the space $W_{2}^{(2,1)}$," Filomat 34:11, 3835-3844 (2020).
42. B. Vasilenko, Spline functions: theory, algorithms, programs. (Novosibirsk (in Russian), 1983) p. 216.
43. S. L. Sobolev, Introduction to the theory of cubature formulas . (Nauka, Moscow (in Russian), 1974).
44. S. L. Sobolev and V. L. Vaskevich, The Theory of Cubature Formulas. (Kluwer Academic Publishers Group, Dordrecht., 1997).
45. A. Hayotov and H. Kuldoshev, "A discrete analogue to the differential operator," Problems of Computational and Applied Mathematics $\mathbf{5 / 1}(\mathbf{4 4})$, 112-122 (2022).
