SCOPE ACADEMIC HOUSE

 $11^{\rm th}$ International Conference «SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD»

November 30, 2020, Sheffield, UK

Conference Proceedings

SCOPE ACADEMIC HOUSE

B&M PUBLISHING

11th International Conference «SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD»

September, 10 - November, 30, 2020, Sheffield, UK

Conference Proceedings

Scope Academic House UK, S Yorkshire, Sheffield

B&M Publishing USA, San Francisco, California

SCOPE ACADEMIC HOUSE

B&M PUBLISHING

11th International Conference «SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD»

Science editor: Prof. Robert Draut

ISBN 978-0-9898799-4-2

DOI: http://doi.org/10.15350/UK_6/11

Copyright © 2020 by Scope Academic House LTD Office 1 Velocity tower 10 st. Mary's gate Sheffield S Yorkshire United Kingdom S1 4LR

All rights reserved.

Published by B&M Publishing. For permission to use material from this text, please contact the publisher at 2076 – 16th Ave., Suite A, San Francisco, California, USA 94116,

11 th International Conference. September, 10 - November, 30, 2020. UK, S Yorkshire, Sheffield
«SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD» • Conference Proceedings
DOI: http://doi.org/10.15350/UK_6/11
B.S. Kurbanov, B.B. Samadov PROTECTION OF INFORMATION SYSTEMS77
<i>X.U. Xayatov, M.Sh. Muxsinova</i> DATA PROTECTION IN DISTRIBUTED INFORMATION SYSTEMS
F.F. Norova
RELATIONSHIP OF DIFFERENT DISCIPLINES WITH INFORMATICS
<i>J.J. Atamuradov</i> PRINCIPLES OF CONSTRUCTION OF EFFECTIVE INFORMATION SYSTEMS83
G.B. Muradova, Sh.J. Shomurodov MODELS OF BUSINESS SERVICE IN THE CLOUD SERVICE
A.A. Abduaxadov, F.D. Xolmurodova, K. Yu. Sadullayeva
KEY BENEFITS OF USING AN ELECTRONIC DIGITAL SIGNATURE
G.Sh. Fattoyeva, Sh.J. Shomurodov
METHODOLOGY FOR DETERMINING MATHEMATICAL CONCEPTS90
<i>M.A. Qudratova</i> TYPES OF THEORIES AND METHODS OF THEIR PROOF92
J. Jumayev, G.M. Usmanova, Sh.B. Baxshilloyev COMPUTER SIMULATION OF THE CONVECTION PROCESS BETWEEN TWO VERTICALLY LOCATED HEAT SOURCES
Z.Z. Shirinov, Sh.Sh. Suvonova METHODS FOR INFORMATION EXCHANGE CONTROL IN COMPUTER NETWORKS97
B.N. Taxirov, A.A. Xakimov MATLAB SYSTEM
G.K. Zaripova, Sh.Sh. Baxronova, M.M. Muxammedova
THE ROLE OF THEORY AND APPLICATION OF INFORMATION SYSTEMS IN THE FIELD OF INFORMATION TECHNOLOGY
N.S. Sayidova, Z.B. Xo'jamqulova PROBLEMS OF INFORMATION SECURITY
N.H. Ergashev, M. Nekboyev MODERN EDUCATIONAL TECHNOLOGIES AS A GUARANTEE OF THE QUALITY OF THE EDUCATIONAL PROCESS
Z. Makovozova GEOTOURISM POTENTIAL OF NORTH OSSETIA-ALANIA 107
<i>R. Durov, E. Varnakova, N. Kobzeva</i> STRATEGIES FOR THE PREVENTION OF CARDIOVASCULAR DISEASES
U. Makhmudxodjayeva SPECIFIC ASPECTS CONCLUSION OF PAID SERVICE CONTRACTS WITH THE
PARTICIPATION OF THE INTERNAL AFFAIR ORGANS 112

11th International Conference. September, 10 - November, 30, 2020. UK, S Yorkshire, Sheffield

«SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD» • Conference Proceedings

DOI: http://doi.org/10.15350/UK_6/11

Research Article

COMPUTER SIMULATION OF THE CONVECTION PROCESS BETWEEN TWO VERTICALLY LOCATED HEAT SOURCES

J. Jumayev¹ G.M. Usmanova² Sh.B. Baxshilloyev²

¹Dotsent of the department of "Applied Mathematics and Programming Technologies", Bukhara state university, Uzbekistan. ²Undegraduate, Bukhara state university, Uzbekistan. ³ Undegraduate, Bukhara state university, Uzbekistan.

DOI: http://doi.org/10.15350/UK_6/11.44

Abstract

This article simulates the process of the formation of dynamic and temperature boundary layers between two vertically located rods, which are heat sources. The formulated system of partial differential equations with boundary conditions is solved numerically and its algorithm is implemented using the DELPHI graphical environment. Chart component was used to draw graphs.

Key words. Dynamic boundary layer, temperature boundary layer, heat source, mathematical model, heat transfer, natural convection, boundary layer equations, laminar regime.

In [1], laminar convective transport near a vertically located heat source was studied. In this work, we numerically investigate a stationary, laminar transport in an adjacent layer immersed in a resting ambient gas between two vertical surfaces.

It is assumed that the ambient temperature is constant and equal l_0 ; the temperature on the surface of the rods is also maintained at constant temperatures equal t_1, t_2 ($t_1 > t_0, t_2 > t_0$)

The considered physical process is mathematically modeled on the basis of the boundary layer approximation equation by the following system of differential equations:

$$\frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0,$$

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\mu \cdot \frac{\partial u}{\partial y} \right) + \frac{\rho \beta (T - T_1)}{Fr},$$
(1)
$$\rho u \frac{\partial E}{\partial x} + \rho v \frac{\partial E}{\partial y} = \frac{1}{\Pr} \quad \frac{\partial}{\partial y} (\mu \cdot \frac{\partial E}{\partial y}).$$

In these equations, the unknown are: μ , ν - longitudinal and transverse components of

the velocity; ρ - density, *T*- absolute temperature, *E* – total energy, as well as dynamic coefficient of viscosity. *Fr* - hydrodynamic Froude number, *Pr*-Prandtl number.

To close the system of differential equations (1), we supplement it with the algebraic

11th International Conference. September, 10 - November, 30, 2020. UK, S Yorkshire, Sheffield

«SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD» • Conference Proceedings

DOI: http://doi.org/10.15350/UK_6/11

equation of total energy, the equation of state. The dependence of the gas viscosity coefficient on temperature is represented by the Sahterland formula [2].

Let us formulate the boundary conditions in the following form:

$$x = 0: \begin{cases} u = 0, v = 0, E = E_{1}, \rho = \rho_{1} & npu \ y = 0 \\ u = 0, v = 0, E = E_{0}, \rho = \rho_{0} & npu \ 0 \prec y \prec a \\ u = 0, v = 0, E = E_{2}, \rho = \rho_{2} & npu \ y = a \\ \end{cases}$$
(2)
$$x \succ 0: \begin{cases} u = 0, v = 0, E = E_{1}, \rho = \rho_{1} & npu \ y = 0 \\ u = 0, v = 0, E = E_{2}, \rho = \rho_{2} & npu \ y = a \end{cases}$$

Schematic flow pattern according to (1) is shown in fig.1.

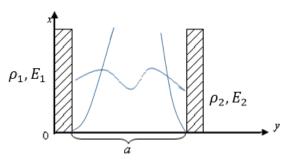


Fig. 1. Schematic flow pattern according to (1).

The above problem is solved numerically using a two-layer, four-point implicit finitedifference scheme and the iteration sweep method.

At the same time, on the basis of the compiled algorithm, a program in the DELPHI language was compiled. During the work of the program, the results were expressed in the form of graphs, for this we used the Chart component.

Figure 1. the appearance of axial velocity and expansion of the dynamic boundary layer at Pr = 0.7 are shown. As can be seen from the figure, the higher along the rod, the higher the speed. Air temperature 300K.

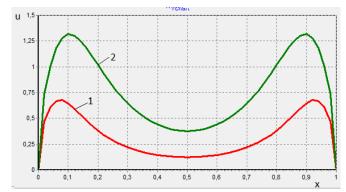


Fig. 1. The emergence of air velocity near heat sources, which have temperatures of 500K, respectively. 1-for $\bar{x} = 5$, 2-for $\bar{x} = 10$.

Figure 2. the appearance of axial velocity and expansion of the dynamic boundary layer at different temperatures of heat sources are given.

11th International Conference. September, 10 - November, 30, 2020. UK, S Yorkshire, Sheffield

«SCIENCE AND PRACTICE: A NEW LEVEL OF INTEGRATION IN THE MODERN WORLD» • Conference Proceedings

DOI: http://doi.org/10.15350/UK_6/11

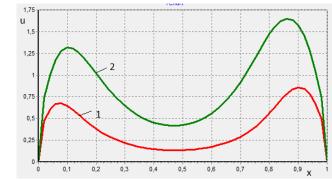


Fig. 2. The emergence of speed near heat sources, which have temperatures of 500K and 800K, respectively. 1-for $\bar{x} = 5$, 2-for $\bar{x} = 10$.

As can be seen from the figures, the higher the temperature of the source, the higher the air velocity near it. This is consistent with the physics of flow.

References

Jumayev J., Shirinov Z., Kuldashev H. Computer simulation of the convection process near a vertically located source. //International conference on information Science and Communications Technologies (ICISCT) 4-6 november. 2019. Tashkent. // <u>https://ieeexplore.ieee.org/document/9012046/</u>

Narziyev M.S., Jumayev J., Habibov F. Yu. Mathematical modeling of droplet fragmentation in mass transfer processes. //Scientific reports of Bukhara State University, 2/2020, p. 8-13.

Жалолов О.И., Хаятов Х.У. Понятие SQL и реляционной базы данных // Universum: технические науки : электрон. научн. журн. 2020. № 6 (75).