

ABSTRACTS

of the international conference

MATHEMATICAL ANALYSIS AND ITS APPLICATIONS IN MODERN MATHEMATICAL PHYSICS

PART II

Samarkand September 23-24, 2022

CONTENTS

SECTION III. NUMERICAL ANALYSIS AND MECHANICS

Azamov S., Nishanova G. Calculation of the coefficients of optimal quadrature formulas in the
space $S_2(P_2)$
Babaev S.S, Kuvvatov B., Mirzoeva S. Construction natural spline in $W_{2\sigma}^{(2,1)}$ space 12
Dalabaev U., Hasanova D. Analysis of Difference Schemes for Differential Equations by the
Moved Node Method
Hayotov A., Bozarov B. Optimal quadrature formulas for oscillatory integrals in the Sobolev
space
Khayriev U. The exponentially weighted optimal quadrature formula in the space $\widetilde{W}_2^{(2,1)}$ of periodic functions
Khuzhavorov B Kh Kholivarov E Ch Determination of Filtration Parameters of a Homoge-
neous Liquid in Fractured-Porous Media
Kuldoshev K Calculation of the coefficients of optimal quadrature formulas in the
$W^{(2,1)}$
Abdunazarov B Shturm-Liuvill operatori parametrlarini tiklashda samarali hisoblash algoritmini
aurish muammolari
Абирзев И. М. Исмендев М.М. Теоретико писловые методы, вля решения одномершие
нитограни що уграриония Франкон ма рторого роза
Абираов И М. Мухторов Б. К. Сродоцио сицтуларного интограла и оро урарнония к систома
алобраниеских уравнения к системе
Абираов И. М. Тонницатов С. Прибликонное решение одноморного интеррали ного урав.
нопраев и. м., топпулатов С. приолиженное решение одномерного интегрального урав-
Абираов И М Прибникание решение системи мисловым
Френгон ма рторого рона метонам итерацию
$\mathbf{\Phi}$ реднольма второго рода методам и терацию
костай на основе инфрового прототина 30
Жимаер Ж. Мухаммалова М. Численное молелирование неизотерминеской струи с по-
мощью однопараметрической модели турбулентности 31
\mathbf{W} ираев $\mathbf{\Gamma}\mathbf{V}$ Мусурмонова М О. Нестационариое вращение абсолютно-жесткого шара в
пористо-упругом полупространстве
Ишанкулов Т., Фозилов Л. Ш. Продолжение бианалитических функций многих комплекс-
ных переменных
Маматов А. Р. Алгоритм решения олной игровой залачи со связанными переменными
Наврузов К., Шарипова Ш.Б., Абликаримов Н.И., Бегжанов А.Ш. Касательное на-
пряжение слвига при колебательном течении вязкоупругой несжимаемой жилкости в плоском
канале
Нормуродов Ч.Б., Турсунова Б.А Численное решение обыкновенного дифференциального
уравнения с малым параметром при старшей производной спектральным методом
Сафаров И. И., Тешаев М. Х., Болтаев З., Ахмедов М. Ш., Жураев Ш. И. Соб-
ственные колебания трубопроводов кругового поперечного сечения с внешним трением40
Сулаймонов Ф.У., Абдукодирова М Вычисления поля скоростей фильтрации переноса
веществ в цилиндрической двухзонной среде
Хаетов А., Курбонназаров А. Оптимальная квадратурная формула для приближенного
вычисления интегралов Фурье
Ходжиев С., Авезов А. Моделирование и численное исследование влияния геометрия сопла
на параметры факела
Ходжиев С., Авезов А.Х. Численные результаты исследования струи на основе полной
системы уравнений Навье-Стокса истекающие из коаксиальной щели

Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs, Brain Sci., 2020, Vol. 10(10), P. 744.

- Giovannelli, L., Rodenas, J.J., Navarro-Jimenez, J.M., Tur, M. Direct medical image-based Finite Element modelling for patient-speci?c simulation of future implants, Finite Elem. Anal. Des., 2017, Vol. 136, P. 37–47.
- Imai, K. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment, World J. Exp. Med., 2015, Vol. 5(3), P. 182–187.

Численное моделирование неизотермической струи с помощью однопараметрической модели турбулентности ¹Жумаев Ж., ²Мухаммадова М.Д.

¹Узбекистан, Бухара, Бухарский государственный университет ²Узбекистан, Бухара, Бухарский государственный университет

Турбулентное перемешивание и распространение свободных турбулентных струй в спутном потоке широко распространено в химико-технологических процессах, пищевой промышленности, поливке полей методом капельных орошений, энергетике и других отраслях техники и народного хозяйства. В последнее время сфера интенсивного исследования и применения процессов тепло- и массообмена чрезвычайно расширилась. Она включает как ведущие направления техники(химические технологии, нефтеразработки и т.д.), так и основные естественные науки(биологию, статистическую физику и др.)

Особую важность приобретает законов движения в тепло- и массообменных процессах в вышеуказанных отраслях. В основном эти процессы происходят по законам распространения турбулентных струй газов в изтермических и неизотермических случаях. Такие течения изучены достаточно широко с целью определения их переносных свойств. Теоретический и практический интерес представляет выяснение одной из основных характеристик переноса - коэффициента турбулентной вязкости. Применяемые в теоретических расчетах полуэмпирические модели турбулентной вязкости в основном опысывают основной участок свободной турбулентной струи.

В настоящей работе рассмотрено истечение неизотермической турбулентной струи из круглого сопла радиусом *a* и распространяющегося в спутном потоке воздуха на основе однопараметрической модели турбулентности, исследованы влияния степени неизотермичности исходного потока на длину начального участка, а также на основные параметры струи: дальнобойность, падение скорости и температуры вдоль оси струи, границы динамического и теплового пограничных слоев.

Считаем, что истечение струи ступенчатое и однородное, статическое давление в струе и в спутном потоке одинаково и равно атмосферному. Для облегчения решения задачи ось направим вдоль струи, а ось перпендикулярно к струи, это позволяет рассмотреть одну половину струи.

Исходные значения задавали ступенчатыми и однородными, или из экспериментальных данных работ.

Систему дифференциальных уравнений в приближении теории турбулентного пограничного слоя в безразмерном виде можно записать в виде [1]:

$$\begin{aligned} \frac{\partial(\rho uy)}{\partial x} + \frac{\partial(\rho vy)}{\partial y} &= 0, \\ \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} - \frac{\partial P}{\partial x} + \frac{1}{y} \frac{\partial}{\partial y} (\rho \varepsilon y \frac{\partial u}{\partial y}), \\ \rho u \frac{\partial(c_p T)}{\partial x} + \rho v \frac{\partial(c_p T)}{\partial y} &= \frac{1}{y \cdot Pr} \frac{\partial}{\partial y} (\rho \varepsilon y \frac{\partial(c_p T)}{\partial y}) + \rho \varepsilon (\frac{\partial u}{\partial y})^2, \\ P &= \rho RT \end{aligned}$$

В (1) неизвестными являются $u, \vartheta, T, \rho, \varepsilon$. Здесь *u*-продольное составляющее скорости, ϑ -поперечное составляющее скорости, T - температура среды, ρ - плотность, ϵ - коэффициент турбулентной вязкости. Как видно, число уравнений 4, а число неизвестных 5. Для замыкания системы нужно найти соотношение для коэффициента турбулентной вязкости.

В последнее время все чаще используется дифференциальные уравнения при определении турбулентной вязкости, так как они позволяет учитывать предысторию потока. А также позволяет моделировать начальный участок струи. Из-за преимущества дифференциального подхода определения коэффициента турбулентной вязкости здесь используем однопараметрическую модель турбулентности, предложенное в [2] и модифицированное для неизотермических течений:

$$\rho u \frac{\partial \varepsilon}{\partial x} + \rho v \frac{\partial \varepsilon}{\partial y} = \frac{1}{y} \frac{\partial}{\partial y} \left(\frac{\rho \varepsilon y}{P r_{\varepsilon}} \frac{\partial \varepsilon}{\partial y} \right) + \rho \varepsilon k_0 \left| \frac{\partial u}{\partial y} \right| + C_0 \varepsilon \left(u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} \right)$$
(2)

В (2) $Pr_{\varepsilon}, k_0, C_0$ - постоянные величины, которые определяются экспериментально.

Граничные условия, при котором решается система дифференциальных уравнений (1) с учетом (2) имеет вид;

$$\begin{cases} x = 0 : \begin{cases} u = u_2, \quad T = T_2, \quad \varepsilon = \varepsilon_2, \quad \vartheta = 0 \text{ при } 0 \le y \le a \\ u = u_1, \quad T = T_1, \quad \varepsilon = \varepsilon_1, \quad \vartheta = 0 \text{ при } a < y \le \infty \end{cases} \\ x > 0 : \begin{cases} \frac{du}{dy} = \vartheta = \frac{dT}{dy} = \frac{d\varepsilon}{dy} = 0, \quad \text{при } y = 0 \\ u \to u_1, \quad \vartheta \to 0, \quad T \to T_1, \quad \varepsilon \to \varepsilon_1 \quad \text{при } y \to y_\infty \end{cases} \end{cases}$$
(3)

Здесь индексом "2" обозначены параметры струи, индексом "1" параметры спутного потока. Предполагается, что спутный поток продолжиться до бесконечности.

Система дифференциальных уравнений (1) с учетом (2-3) решалась численно с использованием двухслойной, неявной четырехточечной конечно-разностной схемы и методом прогонки с итерациями.

Постоянные уравнения для турбулентной вязкости определены из условия наилучшего совпадения продольной скорости струи с экспериментальными данными [1]. На рис.1. приведены значения продольной скорости на оси симметрии. При этом постоянные для уравнения турбулентной вязкости принимали следующие значения:

$$Pr_{\varepsilon} = 0,7; \quad k_0 = 0,02; \quad C_0 = 0,5.$$

Определены параметры поля течения, влияние неизотермичности на длину начального участка, влияние спутности на параметры струи.

Литература

 Jumayev J., Shirinov Z., Kuldashev H. Computer simulation of the convection process near a vertically located source.// International conference on information Science and Communikations Technologiyes (ICISCT) 4-6 november. 2019. Tashkent. Conference Proceedings. pp. 635-638.