

ABSTRACTS

OF THE IX INTERNATIONAL SCIENTIFIC CONFERENCE "ACTUAL PROBLEMS OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGIES AL-KHWARIZMI 2024"

Dedicated to the 630th anniversary of the birth of Mirzo Ulugbek

APAMIT-2024

22-23 October, 2024, Tashkent, Uzbekistan

https://apmath.nuu.uz

Rakhmanov K. S., Tuychiyev X. M. Analyzing web sites using Artificial Intelligence	214
Rasulmuhamedov M. M., Tashmetov K. Sh. Traffic flow forecasting using KAN	215
Samandarov B. S., Tajibaev Sh. Kh. Esbergenov A. J. Forecasting nutrient requirements based on animal physiological status and feed nutritional value	216
Toliyev Kh. I., Geldibayev B. Y. A neural network-based model for predicting milk yield	217
Uteuliev N. U., Djaykov G. M., Dauletnazarov J. I. Efficiency of the YOLOv5 and YOLOv8 models in agriculture for weed detection	
Yilihamujiang Yusupu Application of Matrices in Plant Recognition and Artificial Intelligence: A PYNQ-Z2-Based Solution	218
Section 6: Mathematical analysis and its applications	
Abdikadirov S.M. The Osgood-Brown theorem for α -separately harmonic functions	220
Abduganiyeva O. I., Sayfullayeva M. Z. Adaptive combined control with identification	220
Abdullayev F.G., Imashkyzy M. Approximation properties of some extremal polynomials in the integral and uniform metrics	221
Akbaraliyeva M. SH., Ne'matillayeva M.D. Carleson's Interpolation Theorem in classical domain of type second	
Akramov N.S, Rakhimov K.Kh Capacity dimension of the Brjuno set in \mathbb{C}^n	222
Atamuratov A.A. Extremal functions on parabolic manifolds and regular compacts	223
Atamuratov A. A., Bekchanov S. E. Growth order of holomorphic functions on parabolic Stein manifolds	224
Bakhriddinova H.U. Theorem for Weistrass formula	225
Bazarbaev S.U., Boymurodov S.I. Large entropy measures of Hénon-like maps	
Bazarbaev S.U. On the support of measures of large for polynomial-like maps	
Bobokhonov Sh.S. The corona theorem for $A(z)$ -analytic functions	
Davlatov Sh. O. Some signs of convergence of constant-sign numerical series and improper integrals	229
Gadayev S.A. Differentiability of potentials in the sense of Zygmund	
Ganikhodzhaev R. N, Eshmamatova D. B., Akhmedova D. P., Muminov U. R. Linear homogeneous inequalities and routes of trajectories of Lotka-Volterra operators	
Husenov B. E. Nevanlinna-Ostrovsky class for $A(z)$ -analytic functions	
Imomkulov S.A., Tuychiev T.T. On the continuation of the Hartogs series with harmonic coefficients	
Kamolov X. Q. Some properties of the Green's function on parabolic analytic surfaces	
Karimov J.J. Limit behavior of the distribution function for circle homeomorphisms	
Kuldoshev K.K. (m, ψ) – regularity of boundary compacts	
Khudayarov S.S. About dynamic systems of a QnSO	
Mahkamov E.M., Bozorov J.T. Carleman's formula for a second kind matrix polydisk.	
Muminov K.K. Equivalence of paths with respect to group action $R^4 \triangleleft H(R^4) \dots$	
Ne'matillayeva M.D., Rustamova M.S. Analog of the Carleson's interpolation theorem	
for $A(z)$ -analytic functions	239
Nursultanov E.D., Tleukhanova N.T. Recovery operator of periodic functions from the spaces SH_p^{α} , SW_p^{α}	240
Rahmatullaev M.M., Tukhtabaev A.M. Weakly periodic p-adic quasi Gibbs measures for the Potts model on a Cayley tree	
Rajabov Sh.Sh. The double convolution theorem for symmetric matrix argument functions	241

Linear homogeneous inequalities and routes of trajectories of Lotka-Volterra operators

Ganikhodzhaev R. N 1 , Eshmamatova D. B 2 , Akhmedova D. P 3 , Muminov U. R 4 .

National University of Uzbekistan ¹, Tashkent State Transport University², Andijan State University³, Fergana State University⁴

 $rasulganikhodzhaev@gmail.com^1,\ 24dil@gmail.com^2,\ dilafruz.ahmedova0695@gmail.com^3,\ ulugbek.muminov.2020@mail.ru^4$

The discrete version of the Lotka-Volterra operator on the simplex S^{m-1} is determined by specifying a real skew-symmetric matrix $A = (a_{ki})$ with the condition $|a_{ki}| \leq 1$ and acts according to the following law

 $x_k' = x_k (1 + \sum_{i=1}^m a_{ki} x_i), k = \overline{1,m}$, where, $x' = (x_1', ..., x_m') = Vx$ and $V: S^{m-1} \to S^{m-1}$. It is known [1-2] that $V: S^{m-1} \to S^{m-1}$ for any $|a_{ki}| \le 1$ is a homeomorphism, therefore, along with a positive trajectory $\{x^n\}, n \in \mathbb{N}$ where $x^{n+1} = Vx^n, x^0 \in S^{m-1}$, can be consider also negative trajectories defined by the mapping $V^{-1}: S^{m-1} \to S^{m-1}$.

In this part of the work we will consider one of the most interesting representatives of the Lotka–Volterra map, preserving the four-dimensional simplex $V: S^4 \to S^4$, in case $\delta_1, \delta_2, \delta_3 > 0$. Let the skew-symmetric matrix have the form

$$A = \begin{pmatrix} 0 & 0 & a & -b & c \\ 0 & 0 & -d & e & -f \\ -a & d & 0 & 0 & 0 \\ b & -e & 0 & 0 & 0 \\ -c & f & 0 & 0 & 0 \end{pmatrix}, where 0 < a, b, c, d, e, f \le 1.$$

$$(1)$$

Next, we introduce the following notation: vertices of the simplex S^4 by $e_1, ..., e_5$, $\Gamma_{12} = co\{e_1, e_2\}$ – edge, $\Gamma_{345}\{e_3, e_4, e_5\}$ – face of the simplex, as well as $\delta_1 = ce - bf$, $\delta_2 = cd - af$, $\delta_3 = bd - ae$, $\Delta = \delta_1 + \delta_2 + \delta_3$. Note that $Fix(V) = \Gamma_{12} \cup \Gamma_{345}$. Taking into account the positivity of the expressions $\delta_1 = ce - bf$, $\delta_2 = cd - af$, $\delta_3 = bd - ae$, we mark the points $M_1 = \left(\frac{d}{a+d}, \frac{a}{a+d}, 0, 0, 0\right)$, $M_2 = \left(\frac{e}{b+e}, \frac{b}{b+e}, 0, 0, 0\right)$, $M_3 = \left(\frac{f}{c+f}, \frac{c}{c+f}, 0, 0, 0\right)$, $M_4 = (0, 0, \frac{b}{a+b}, \frac{a}{a+b}, 0)$,

 $\begin{pmatrix} \frac{f}{c+f}, \frac{c}{c+f}, 0, 0, 0 \end{pmatrix}, M_4 = (0, 0, \frac{b}{a+b}, \frac{a}{a+b}, 0), \\ M_5 = (0, 0, \frac{e}{d+e}, \frac{d}{d+e}, 0), M_6 = (0, 0, 0, \frac{c}{b+c}, \frac{b}{b+c}), M_7 = (0, 0, 0, \frac{f}{e+f}, \frac{e}{e+f}), M_8 = \left(0, 0, \frac{\delta_1}{\Delta}, \frac{\delta_2}{\Delta}, \frac{\delta_3}{\Delta}\right), \text{ with the help of which we determine the increase or decrease of this coordinate under the action of the operator <math>V$. Consider $\delta_1, \delta_2, \delta_3 > 0$ we obtain the following picture of the partition of the faces Γ_{12} and Γ_{345} . In respect that $a\delta_1 - b\delta_2 + c\delta_3 = 0$ and $-d\delta_1 + e\delta_2 - f\delta_3 = 0$ we obtain solutions to the inequalities $P = \{x \in S^4 : Ax \geq 0\} = co\{M_6, M_7, M_8\}, Q = \{x \in S^4 : Ax \leq 0\} = co\{M_4, M_5, M_8\}$

Theorem. Under the condition $\delta_1, \delta_2, \delta_3 > 0$, any trajectory converges, and if $x^{(0)} \in riS^4$, then $\alpha(x^{(0)}) \in P, \omega(x^{(0)}) \in Q$.

Lemma. The intersection of any two polytopes is either empty or a common face.

REFERENCES

- 1. Ganikhodzhaev R.N. A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems. // Math. Notes. 1994. V. 56(5). p. 1125-1131.
- 2. M.A.Tadzhieva, D.B. Eshmamatova, R.N. Ganikhodzhaev, "Volterra-Type Quadratic Stochastic Operators with a Homogeneous Tournament" (Journal of Mathematical Sciences, 278(3), 2024), pp. 546-556.

Nevanlinna-Ostrovsky class for A(z)-analytic functions

Husenov B. E.

Bukhara State University, Bukhara, Uzbekistan b.e.husenov@buxdu.uz

Let A(z) be an antianalytic function, i.e. $\frac{\partial A}{\partial z}=0$ in the convex domain $D\subset\mathbb{C}$; moreover, let $|A(z)|\leq c<1$ for all $z\in D$, where c=const. The function f(z) is said to be A(z)-analytic in the domain D if for any $z \in D$, the following equality holds:

$$\frac{\partial f}{\partial \bar{z}} = A(z) \frac{\partial f}{\partial z} \tag{1}$$

We denote by $O_A(D)$ the class of all A(z)-analytic functions defined in the domain D. According to, the function

$$\psi(a, z) = z - a + \overline{\int_{\gamma(a, z)} \overline{A(\tau)} d\tau}$$

is an A(z)-analytic function.

The following set is an open subset of arbitrary convex domain D:

$$L\left(a,r\right) = \left\{ \left| \psi\left(a,z\right) \right| = \left| z - a + \overline{\int\limits_{\gamma\left(a,z\right)} \overline{A(\tau)} d\tau} \right| < r \right\}.$$

For sufficiently small r>0, this set compactly lies in D (we denote this fact by $L(a,r)\subset\subset D$) and contains the point a. This set L(a,r) is called the A(z)-lemniscate centered at the point a. The lemniscate L(a,r)is a simply - connected set (see [2]).

Now we assume that the domain $D \subset \mathbb{C}$ is convex, and $\xi \in D$ is a fixed point in it. Consider the function

$$K(z,\xi) = \frac{1}{2\pi i} \frac{1}{z - \xi + \int\limits_{\gamma(\xi,z)} \overline{A(\tau)} d\tau},$$
 (2)

where $\gamma(\xi,z)$ is a smooth curve which points of $\xi,z\in D$. Since the domain is simply connected and the function $\overline{A}(z)$ is holomorphic, the integral

$$I(z) = \overline{\int_{\gamma(\xi,z)} \overline{A(\tau)} d\tau}$$

does not depend on a path of integration; it coincides with a primitive, i. e. $I'(z) = \overline{A}(z)$. (see [2]).

Initially, we introduce the Hardy class for A(z)-analytic functions. Let $L(a,r) \subset\subset D$ and $f(z)\in$ $O_A(L(a,r)).$

Definition 1 (see [3]). The Hardy class H^p , p > 0 for A(z)-analytic functions is the set of all functions $f(z) \in O_A(L(a,r))$ such that its averages

$$\frac{1}{2\pi\rho} \int_{|\psi(a,z)|=\rho} |f(z)|^p |dz + A(z)d\bar{z}|$$

 $\text{are uniformly bounded for } \rho < r, \quad \sup_{\rho < r} \left\{ \frac{1}{2\pi\rho} \int\limits_{|\psi(a,z)| = \rho} |f(z)|^p |dz + A(z) d\bar{z}| \right\} < \infty.$

Now we introduce a class of functions close to the Hardy space:

Definition 2. Let $f(z) \in O_A(L(a,r))$. This function belongs to the class Nevanlinna N_A if its mean

$$\frac{1}{2\pi\rho} \int_{|\psi(a,z)|=\rho} \ln^{+}|f(z)||dz + A(z)d\bar{z}|$$
 (3)

is uniformly bounded, $\sup_{\rho < r} \left\{ \frac{1}{2\pi\rho} \int_{|\psi(a,z)| = \rho} \ln^+ |f(z)| |dz + A(z) d\bar{z}| \right\} < +\infty.$ Considering that the geometric mean $\frac{1}{2\pi\rho} \int_{|\psi(a,z)| = \rho} \ln^+ |f(z)| |dz + A(z) d\bar{z}| \text{ is no greater than the arithmetic mean } \left(\frac{1}{2\pi\rho} \int_{|\psi(a,z)| = \rho} \ln^+ |f(z)| |dz + A(z) d\bar{z}| \right)^{\frac{1}{p}} \text{ for any } p > 0, \text{ we conclude that class } H_A^p \text{ is contained in class } M = \frac{H^p}{p} \in \mathbb{N}$ contained in class N_A , $H_A^p \subset N$

References

- 1. Gavrilov V.I., Subbotin A.V., Efimov D.A., Boundary Properties of Analytic Functions (Further Contribution). Moscow.: Moscow University Press, 2012.
- 2. Sadullaev A., Zhabborov N.M., On a class of A-analytic functions. J. Siberian Fed. Univ. volume 9, issue 3, pp. 374-383, 2016.
- 3. Zhabborov N.M., Khursanov Sh.Y., Husenov B.E. Existence of boundary values of Hardy class functions H_A^1 . Bulleten of the National University of Uzbekistan, volume 5, issue 2, pp. 79-90, 2022.

_____ ***

On the continuation of the Hartogs series with harmonic coefficients

Imomkulov S. A.¹, Tuychiev T. T.²

National University of Uzbekistan^{1,2}, Tashkent, Uzbekistan sevdiyor i@mail.ru; tahir290755@gmail.com

The paper considers the question of continuation of sums of Hartogs series, allowing harmonic continuation along a fixed direction, assuming only the harmonicity of the coefficients. Many works of famous mathematicians on the theory of functions of a complex variable are devoted to the study of this issue.

Let us consider the following Hartogs formal series:

$$u(x,w) = \sum_{k=-\infty}^{+\infty} c_k(x)\rho^{|k|}e^{ik\varphi}, w = \rho e^{ik\varphi}, x \in D,$$
(1)

where D is a domain from \mathbb{R}^n . The main result is the following theorem.

Theorem. Let series (1) satisfy the following conditions

- 1. all coefficients $c_k(x) \in h(D)$ are harmonic functions,
- 2. for each fixed $x \in D$ the inequality

$$\overline{\lim_{k \to \infty}} |^{|k|} \sqrt{|c_k(x)|} \le \frac{1}{R} , R > 0.$$

Then there exists a nowhere dense closed set $S \subset D$ such that series (1) locally uniformly converges in the domain $(D \mid S) \times \{w: |w| < R\}$ and the sum of the series u(x, w) belongs to the class $h((D \mid S) \times \{w: |w| < R\})$ harmonic functions.

The proof of this theorem essentially uses the following lemma.

Lemma [1]. Consider the space $\mathbb{R}^n(x)$ embedded in $\mathbb{C}^n(z) = \mathbb{R}^n(x) + i \cdot \mathbb{R}^n(y)$, where $z = (z_1, ..., z_n)$, $z_j = x_j + i \cdot y_j, j = 1, ..., n$, and let D be some bounded domain of $\mathbb{R}^n(x)$. Then there exists a domain $\hat{D} \subset \mathbb{C}^n(z)$ such that $D \subset \hat{D}$ and for any function $u(x) \in h(D)$ there exists a function $\hat{u}(z)$ holomorphic in the domain \hat{D} such that $\hat{u}|_D = u$. In addition, for any number M > 1 there is a subdomain $\hat{D}_M \subset \hat{D}$, $D \subset \hat{D}_M$, such that $\|\hat{u}\|_{\hat{D}_M} \leq M\|u\|_D$, $\forall u \in h(D) \cap L_{\infty}(D)$.

Comment. A similar problem for Hartogs series with holomorphic coefficients was considered in [2].

References

- 1. Sadullayev A.S., Imomkulov S.A Prodolzheniye golomorfnykh i plyurigarmonicheskikh funktsiy s tonkimi osobennostyami na paralel'nykh secheniyakh. Trudy matematicheskogo instituta im. V.A. Steklova, 2006, t. 53. s.158-174. (in Russian).
- 2. Tuychiev T., Tishabaev J. On the continuation of the Hartogs series with holomorphic coefficients, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: 2019 . Vol.2: Iss.1, Article 5. pp. 69-76. DOI: https://doi.org/10.56017/2181-1318.1021.