BUXORO DAVLAT UNIVERSITETI

OʻZR FA V.I. ROMANOVSKIY NOMIDAGI MATEMATIKA INSTITUTI

MATEMATIK FIZIKA VA ZAMONAVIY ANALIZNING TURDOSH MASALALARI

professor D.K. Durdiyev tavalludining 60 yilligiga bagʻishlangan xalqaro ilmiy anjumani

Buxoro shahri, 10-11-oktyabr, 2025 yil

MA'RUZALAR TEZISLARI

I TOM

BUKHARA STATE UNIVERSITY

V.I. ROMANOVSKY INSTITUTE OF MATHEMATICS OF THE ACADEMY OF SCIENCES OF UZBEKISTAN

MATHEMATICAL PHYSICS AND RELATED PROBLEMS OF MODERN ANALYSIS

International scientific conference dedicated to the 60th anniversary of the birth of Professor D.K. Durdiev Bukhara city, October 10-11, 2025

ABSTRACTS

PART I

Eshimbetov M.R., Qulahmadov F.G'., Eshimbetov J.R. On a max-min variant of the Riesz representation theorem	73
Husenov B.E. Continuation of $A(z)$ -analytic functions according to penvel	75
Ismoilova D.E. The existence of eigenvalues of a second-order operator matrix	76
Jumayev J.N. The sufficient conditions for the preservation of the finite-dimensional simplex by a cubic operator Khaliov A.Z. Positive solutions of systems of two poplineer algebraic equations	78
Positive solutions of systems of two nonlinear algebraic equations Khalkhuzhaev A.M., Toshturdiev A.M. Invariant subspaces of integral operators	79 81
Khamrayev A.Yu., Doniyorov A.R. On the dynamics of a non-Volterra non-hyperbolic cubic stochastic operator	83
Khatamov N.M., Kodirova M.A. On the non-extremality of translation-invariant Gibbs measures for the blume-capel model on the Cayley tree Khudayarov S.S	84
About dynamic systems of a QnSO	85
Kurbanov Sh.Kh. Ehe spectral properties of the generalized friedrichs model with the rank two perturbation	87
Lomonosov T.A. A simple method of second order differentiation of an implicit function in separable Banach spaces Muhammadova M.F.	88
Applications of $A(z)$ -analytic functions to series	90
Muminov M.I., Usmonov A.A The Spectrum of Discrete Schrödinger Operator on a one Dimensional Kagome Lattice Mustafoyeva Z.E.	91
Coupled ising-potts model with external field on Cayley trees	93
Nodirov Sh.D., Eshkabilov Yu.X. On positive fixed points of Hammerstein-type integral equations	95
Norov A.Z, Khamrayev A.Yu., Jumayev J.N. On the dynamics of a Lotka-Volterra type system with equal dominance	96
Oripova S.Q. Application of $A(z)$ -analytic functions to some examples	98
Pardayev Sh.A. Translation-invariant Gibbs measures for the Boltzmann model on the Cayley	100
Rahmatullaev M.M., Abraev B.U. On constructive description of non-periodic Gibbs measures for the SOS model on a Cayley tree	102

is a max-min linear functional on $C_b(X)$. Conversely, for any max-min linear functional $\tilde{\nu}: C_b(X) \to \mathbb{R}$ there exists a unique τ -smooth idempotent probability measure $\tilde{\mu}(X) \neq 0$ on $\mathfrak{B}(X)$ such that

$$\tilde{\nu}(\tilde{\varphi}) = \ln\left(\frac{1}{\tilde{\mu}(X)}\int_{X}^{\oplus} e^{\tilde{\varphi}(x)}d\tilde{\mu}\right), \tilde{\varphi} \in C_{b}(X),$$

where $C_b(X)$ denote the set of real-valued bounded continuous functions on X.

REFERENCES

- 1. Brydun V. and Zarichnyi M. Spaces of max-min measures on compact Hausdorff spaces. arXiv:1904.08669v1 [math.GN] 18 Apr. 2019.
- 2. Köcinac L. D. R., Zaitov A. A., Eshimbetov M. R. On the Čech-completeness of the space of τ -smooth idempotent measures. Axioms, 2024, 13(8), pp. 569–582.
- 3. Zaitov A. A., Eshimbetov M. R. On a max-plus Variant of the Riesz Representation Theorem. Bulletin of the Institute of Mathematics, 2023, Vol. 6, no. 5, pp. 73–79.

CONTINUATION OF A(z)-ANALYTIC FUNCTIONS ACCORDING TO PENVEL

Husenov B. E.

Bukhara State University, Bukhara, Uzbekistan; b.e.husenov@buxdu.uz

We investigate this thesis of the continuation of the A(z)-analytic function according to Penvel. Here, we will use the principle of continuity.

Let A(z) be an antianalytic function in the domain $D \subset \mathbb{C}$; moreover, let $|A(z)| \leq c$ for all $z \in D$, where c < 1. The function f(z) is said to be A(z)-analytic in the domain D if for any $z \in D$, the following equality holds:

$$\frac{\partial f}{\partial \bar{z}} = A(z) \frac{\partial f}{\partial z} \tag{1}$$

We denote by $O_A(D)$ the class of all A(z)-analytic functions defined in the domain D (see [1]).

According to, the function $\psi(a,z) = z - a + \sqrt{\int_{\gamma(a,z)} \overline{A(\tau)} d\tau}$ is an A(z)-analytic function.

The following set $L(a,r) = \{ |\psi(a,z)| < r \}$ is an open subset of arbitrary convex domain D. For sufficiently small r > 0, this set compactly lies in D and contains the point a. This set L(a,r) is called the A(z)-lemniscate centered at the point a. The lemniscate L(a,r) is a simply - connected set (see [1]).

If $f(z) \in O_A(L(a,r)) \cap C(\bar{L}(a,r))$, where $L(a,r) \subset D$ is a fixed A(z)-lemniscate, then in L(a,r) the function f(z) is expanded in a Taylor series:

$$f(z) = \sum_{k=0}^{\infty} c_k \psi^k(a, z), \tag{2}$$

where
$$c_k = \frac{1}{2\pi i} \int_{|\psi(a,\xi)|=\rho} \frac{f(\xi)}{(\psi(a,\xi))^{k+1}} \left(d\xi + A(\xi) d\bar{\xi} \right), 0 < \rho < r, k = 0, 1, 2, \dots \text{ (see [1])}.$$

Suppose that two lemniscates $L(a, r_1)$ and $L(b, r_2)$, whose intersection is the empty set, $L(a, r_1) \cap L(b, r_2) = \emptyset$, have a common boundary section consisting of a smooth curve l, and consider the domain $D = L(a, r_1) \bigcup L(b, r_2) \bigcup l$.

The principle of continuity for A(z)-analytic functions. If functions $f_1(\zeta)$ and $f_2(\zeta)$ are A(z)-analytic in lemniscates $L(a, r_1)$ and $L(b, r_2)$ respectively, continuous up to l and, in addition,

$$f_1(\zeta) = f_2(\zeta), \zeta \in l,$$

then function $f_2(\zeta)$ is an A(z)-analytic continuation of function $f_1(\zeta)$ from lemniscate $L(a, r_1)$ to lemniscate $L(b, r_2)$ through curve l.

One important consequence follows from the principle of continuity. Let l, the boundary of the lemniscate $L(c, r_3)$, contain a smooth curve l_0 , and let the function $f(\zeta)$ be A(z)-analytic in $L(c, r_3)$ and continuous up to l_0 . Let's also assume that $f(\zeta) = 0, \zeta \in l_0$, then $f(\zeta) \equiv 0$ everywhere up to $L(c, r_3)$ (see [2]).

In fact, let us attach to lemniscate $L(c, r_3)$ along subset l_0 of its border l lemniscate $L(d, r_4), L(c, r_3) \cap L(d, r_4)$, and consider function

$$F(\zeta) = \begin{cases} f(\zeta), & \zeta \in L(c, r_3), \\ 0, & \zeta \in l_0, \\ 0, & \zeta \in L(d, r_4). \end{cases}$$

By virtue of the principle of continuity we conclude that function $F(\zeta)$ A(z)-analytic in the domain of $D = L(c, r_3) \bigcup L(d, r_4) \bigcup l_0$. On the other hand, since $F(\zeta) = 0$ is in the lemniscate $L(d, r_4)$, which lies inside D, then by the property of uniqueness of A(z)-analytic functions $F(\zeta) = 0$ is everywhere in D, and therefore also in $L(c, r_3)$, and consequently $f(\zeta) \equiv 0$ is in $L(c, r_3)$ (see [2]).

REFERENCES

- 1. Sadullaev, A. and Zhabborov, N.M. On a class of A-analytic functions, Journal Siberian Federal University. Mathematics and Physics. 2016. Volume 9, No. 3. pp. 374–383.
- 2. Tishabaev, Zh.K. and Tirkasheva, G.D. The uniqueness teorem for A(z)-analytic functions, Scientific Republican Conference "New Results of Mathematics and their Applications II". Samarkand. 2018 May 14-15. pp. 14-15.

THE EXISTENCE OF EIGENVALUES OF A SECOND-ORDER OPERATOR MATRIX

Ismoilova D. E

Bukhara State University, Bukhara, Uzbekistan; dilierkinovna9@gmail.com

By $\mathbb{T} := (-\pi; \pi]$ we denote an one dimensional torus. Let $\mathcal{H}_0 := \mathbb{C}$ be the one-dimensional complex space, $\mathcal{H}_1 := L_2(\mathbb{T})$ be the Hilbert space of square-integrable (complex-valued) functions defined on \mathbb{T} .

We introduce the Hilbert space

$$\mathcal{F}_{\mathrm{as}}^{(1)}\left(L_2(\mathbb{T})\right) := \mathcal{H}_0 \oplus \mathcal{H}_1.$$

An element of the space $\mathcal{F}_{as}^{(1)}(L_2(\mathbb{T}))$ is a vector function of the form $f = \{f_0, f_1\}$, where $f_{\alpha} \in \mathcal{H}_{\alpha}, \alpha = 0, 1$.