Carleman's Formula for A(z)-Analytic Functions

N. M. Zhabborov^{1*}, N. Kh. Narzillaev^{2**}, and B. E. Husenov^{3***}

(Submitted by A. M. Elizarov)

¹Department of Applied Mathematics of Tashkent State University of Economics, Tashkent, 100066 Uzbekistan

²Faculty of Mathematics of the National University of Uzbekistan, Tashkent, 100174 Uzbekistan ³Department of Mathematical Analysis of Bukhara State University, Bukhara, 200118 Uzbekistan Received October 18, 2024; revised November 9, 2024; accepted November 14, 2024

Abstract—In this paper, we investigate A(z)-analytic functions, where A(z) is a function that is antianalytic. The article demonstrates the existence of an A(z)-harmonic measure at most points on the boundary of a lemniscate. The main contribution of this paper is the development of a new quenching function for A(z)-analytic functions. This quenching function is used to derive Carleman formula for A(z)-analytic functions in the Hardy class.

2010 Mathematics Subject Classification: 30C62, 30B30, 31A25

DOI: 10.1134/S1995080224607823

Keywords and phrases: A(z)-analytic functions, Hardy class, A(z)-lemniscate, boundary values, A(z)-harmonic measures

1. INTRODUCTION

1.1. A(z)-Analytic Functions

One of the major challenges in the classical theory of complex analysis is the integral representation of analytic functions, which allows us to recover a function within a domain from its values along the boundary. Additionally, it is natural to inquire how an analytic function may be reconstructed based on its value at a single point on the boundary of a simply-connected domain. In 1926, T. Carleman achieved a significant breakthrough by solving this issue for certain types of domains. He devised a strategy for constructing a "quenching" function in the context of boundary-value problems. Subsequently, this problem was independently resolved by Cauchy and other researchers. G.M. Goluzin and V.I. Krylov further extended Carleman's findings in 1933, employing a specialized holomorphic function to assist with the process, which relies on a portion of the boundary of the domain [2]. However, this technique was only viable for simple domains. Also, this paper provides an overview and extends some boundary properties of the class of holomorphic functions, such as [9, 10].

Let A(z) be antianalytic function, i.e., $\frac{\partial A}{\partial z}=0$ in the domain $D\subset\mathbb{C}$ and there is a constant c<1 such that $|A(z)|\leq c$ for all $z\in D$. The function f(z) is said to be A(z)-analytic in the domain D if for any $z\in D$, the following equality holds

$$\frac{\partial f}{\partial \bar{z}} = A(z) \frac{\partial f}{\partial z}.\tag{1}$$

We denote by $O_A(D)$ the class of all A(z)-analytic functions defined in the domain D. Since an antianalytic function is infinitely smooth, then $O_A(D) \subset C^\infty(D)$ (see [5]). In this case, the following takes place.

^{*}E-mail: jabborov61@mail.ru

^{**}E-mail: n.narzillaev@nuu.uz

^{***}E-mail: b.e.husenov@buxdu.uz

Theorem 1 (see [3], analogue of Cauchy integral theorem). If $f \in O_A(D) \cap C(\bar{D})$, where $D \subset \mathbb{C}$ is a domain with smooth ∂D , then

$$\int_{\partial D} f(z)(dz + A(z)d\bar{z}) = 0.$$

Now we assume that the domain $D \subset \mathbb{C}$ is convex, and $a \in D$ is a fixed point in it. Since the function $\overline{A}(z)$ is analytic, the integral

$$I(z) = \int_{\gamma(a,z)} \overline{A(\tau)} d\tau$$

is independent of the path of integration; it coincides with the antiderivative $I'(z) = \overline{A}(z)$. Consider the function

$$K(z,a) = \frac{1}{2\pi i} \frac{1}{z - a + I(z)},$$

where $\gamma(a, z)$ is a smooth curve which connects the points $a, z \in D$ (see [5]).

Theorem 2 (see [5]). K(z,a) is an A(z)-analytic function outside of the point z=a, i.e., $K(z,a) \in O_A(D\setminus\{a\})$. Moreover, at z=a the function K(z,a) has a simple pole.

Remark 1 (see [5]). If a simply connected domain $D \subset \mathbb{C}$ is not convex, then the function

$$\psi(a, z) = z - a + I(z),$$

although well defined in D, may have other isolated zeros except $a: \psi(a,z) = 0$ for except $z \in P \setminus \{a,a_1,a_2,...\}$. Consequently, $\psi \in O_A(D)$, $\psi(a,z) \neq 0$ when $z \notin P$ and K(z,a) is an A(z)-analytic function only in $D \setminus P$, it has poles at the points of P. Due to this fact we consider the class of A(z)-analytic functions only in convex domains.

According to [5], Theorem 1.2, the function $\psi(a,z)$ is an A(z)-analytic function.

The following set is an open subset of *D*:

$$L(a,r) = \{ z \in D : |\psi(a,z)| < r \}.$$

For sufficiently small r > 0, this set compactly lies in D (we denote it by $L(a,r) \subset\subset D$) and contains the point a. The set L(a,r) is called an A(z)-lemniscate centered at the point a. The lemniscate L(a,r) is a simply-connected set (see [5]).

Theorem 3 (see [4], Cauchy's integral formula). Let $D \subset \mathbb{C}$ be a convex domain and $G \subset\subset D$ be an arbitrary subdomain with a smooth or piecewise smooth ∂G . Then, for any function $f(z) \in O_A(G) \cap C(\bar{G})$, the following formula holds

$$f(z) = \int_{\partial G} f(\xi)K(z,\xi) \left(d\xi + A(\xi)d\bar{\xi}\right), \quad z \in G.$$
 (2)

1.2. A(z)-Harmonic and A(z)-Subharmonic Functions

Let f(z) = u(z) + iv(z).

Theorem 4 (see [6]). The real part u(z) of the functions $f(z) \in O_A(D)$ satisfies the equation

$$\Delta_A u := \frac{\partial}{\partial z} \left(\frac{1}{1 - |A|^2} \left((1 + |A|^2) \frac{\partial u}{\partial \bar{z}} - 2A \frac{\partial u}{\partial z} \right) \right) + \frac{\partial}{\partial \bar{z}} \left(\frac{1}{1 - |A|^2} \left((1 + |A|^2) \frac{\partial u}{\partial z} - 2\bar{A} \frac{\partial u}{\partial \bar{z}} \right) \right) = 0$$
(3)

in the domain D.

Conversely, if D is a simply connected domain, and a function $u \in C^2(D)$ satisfies the differential equation (3), then there is u(z) = Ref(z).

In connection with Theorem 4, it is natural to define A(z)-harmonic functions as follows.

Definition 1 (see [6]). A function $u \in C^2(D)$, $u : D \to \mathbb{R}$ is called A(z)-harmonic if it satisfies in the domain D the differential equation (3).

The class of A(z)-harmonic functions in the domain D is denoted as $h_A(D)$. Thus, the operator \triangle_A in the theory of A(z)-harmonic functions plays the same role as Laplace operator \triangle in the theory of harmonic functions. It follows from Theorem 4 that the real and imaginary parts of A(z)-analytic function f = u + iv in the domain D are A(z)-harmonic functions. The function v is called the A(z)-conjugate harmonic function to u.

Theorem 5 (see [7], on the mean of A(z)-harmonic function in lemniscate). Let D be a convex domain. If u(z) is an A(z)-harmonic function in lemniscate $L(a,r) \subset D$, then for any $\rho < r$ we have

$$u(a) = \frac{1}{2\pi\rho} \int_{|\psi(a,\xi)|=\rho} u(\xi) \left| d\xi + A(\xi) d\bar{\xi} \right|,\tag{4}$$

$$u(a) = \frac{1}{\pi \rho^2} \iint_{|\psi(a,\xi)| \le \rho} u(\xi) \left(1 - |A(\xi)|^2\right) \frac{d\xi \wedge d\bar{\xi}}{2i}.$$
 (5)

Theorem 6 (see [6], analogue of the Poisson formula for A(z)-harmonic functions). If the function $\omega(\zeta)$ is continuous on the boundary of the lemniscate L(a,r), then the function

$$u(z) = \frac{1}{2\pi r} \int_{|\psi(a,\zeta)|=r} \omega(\zeta) \frac{r^2 - |\psi(a,z)|^2}{|\psi(\zeta,z)|^2} |d\zeta + A(\zeta)d\bar{\zeta}|$$

$$(6)$$

is the solution of the Dirichlet problem in L(a,r), i.e., $u(z) \in h_A(L(a,r)) \cap C\left(\bar{L}(a,r)\right) : u(z)|_{\partial L(a,r)} = \omega(\zeta)$. Conversely, any function $u(z) \in h_A(L(a,r)) \cap C(\bar{L}(a,r))$ is represented in L(a,r) by the Poisson integral

$$u(z) = \frac{1}{2\pi r} \int_{|\psi(a,\zeta)| = r} u(\zeta) \frac{r^2 - |\psi(a,z)|^2}{|\psi(\zeta,z)|^2} |d\zeta + A(\zeta)d\bar{\zeta}|, \quad z \in L(a,r).$$
 (7)

Formulas (6) and (7) are analogues of the Poisson formula for A(z)-harmonic functions and $P(z,\zeta)=\frac{r^2-|\psi(a,z)|^2}{|\psi(\zeta,z)|^2}$ is the Poisson kernel for A(z)-harmonic functions.

Using the averaging operator (4), we can determine A(z)-subharmonic functions.

Definition 2 (see [7]). The function $u(z): D \to [-\infty, \infty)$ is called A(z)-subharmonic in the domain $D \subset \mathbb{C}$ if it is semi-continuous from above, i.e., $\overline{\lim_{w \to z}} u(w) \le u(z)$, $\forall z \in D$ and the inequality of average is valid

$$u(a) \le \frac{1}{2\pi r} \int_{|\psi(a,\zeta)|=r} u(\zeta) \left| d\zeta + A(\zeta) d\bar{\zeta} \right|$$

for any fixed point $a \in D$ and for any lemniscate $L(a,r) = \{|\psi(a,z)| < r\} \subset D$, where r > 0.

The class of A(z)-subharmonic in D functions is denoted by $sh_A(D)$.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 12 2024

1.3. Angular Limits and Hardy Classes for A(z)-analytic Functions

Let $L(a,r) \subset\subset D$. First, we define the concepts of angular and radial limits of A(z)-subharmonic and A(z)-analytic functions in lemniscate L(a,r). The radial limits of the function f(z) at some point $\zeta \in \partial L(a,r)$ are denoted as $f^*(\zeta)$, and the angular limits are denoted as $f^*(\zeta)$ (see [8]).

In the classical case of the disk $U = \{w \in \mathbb{C} : |w| < 1\} \subset \mathbb{C}_w$, the limit by the radius $\tau_{\zeta} = \{w = t\zeta\}$, $0 \le t \le 1, \zeta \in \partial U$ of the function g(w),

$$g^*(\zeta) = \lim_{w \to \zeta, w \in \tau_\zeta} g(w)$$

is called the radial limit, and the limit by the angle $\triangleleft \subset U$, ending at the point $\zeta \in \triangleleft$, is called the angular limit,

$$g_{\triangleleft}^*(\zeta) = \lim_{w \to \zeta, w \in \triangleleft_{\zeta}} g(w).$$

Since lemniscate L(a,r) is a simply connected domain with a real analytic boundary, then according to Riemann's theorem there exists a conformal map $\chi(z):U\to L(a,r)$, which is also conformal in some neighborhood of closure $\bar U$. Let χ maps the boundary point $\lambda\in\partial U$ to the boundary point $\zeta\in\partial L(a,r)$. Then, the curve $\gamma_\zeta=\chi(\tau_\lambda)$ has the property that it connects points a,ζ and is perpendicular to all lines of level $\partial L(a,\rho)=\{|\psi(a,z)|=\rho\}, 0<\rho\leq r$. In the theory of A(z)-analytic functions, the curve $\gamma_\zeta=\chi(\tau_\lambda)$ plays the role of the radial direction, and the image of the angle $\chi(\sphericalangle)$ plays the role of the angular set at the point $\zeta\in\partial L(a,r)$. We will denote this angle by $\sphericalangle=\sphericalangle_\zeta$. The limit $f^*(\zeta)=\lim_{z\to\zeta,z\in\gamma_\zeta}f(z)$ is

called the radial limit, and $f_{\triangleleft}^*(\zeta) = \lim_{z \to \zeta, z \in \triangleleft_{\zeta}} f(z)$ is the angular limit of the function f(z) at the point $\zeta \in \partial L(a,r)$ (see [8]).

Now we will show the smoothness of the boundary of lemniscate L(a,r). For this, we take automorphism $\chi^{-1}(z):\overline{L}(a,r)\to \overline{U}$ by Riemann's theorem. Let there be some neighborhood $V=\{\psi(a,\zeta)=re^{i\theta},|\theta|<\varepsilon\}$ for $\forall \varepsilon>0$. Also has $\chi^{-1}(V)\subset \partial U$ and $\chi^{-1}(\zeta_0)=\lambda_0\in \partial U$. Further, there is a diffeomorphism $\pi=-i\ln\chi^{-1}(\zeta):V\to [-1;1]$. This diffeomorphism represents all boundary points of the differentiability of the function $f^*(\zeta)$ and $f^*_{\lhd}(\zeta)$.

Next, we introduce the Hardy class for A(z)-analytic functions.

Definition 3 (see [8]). The Hardy class H^p , p > 0, for A(z)-analytic functions is the set of all functions f(z) such that its averages

$$\frac{1}{2\pi\rho} \int_{|\psi(a,z)|=\rho} |f(z)|^p \left| dz + A(z)d\bar{z} \right| \tag{8}$$

are uniformly bounded for $\rho < r$, i.e., $\sup_{\rho < r} \left\{ \frac{1}{2\pi\rho} \int\limits_{|\psi(a,z)| = \rho} |f(z)|^p \Big| dz + A(z) d\bar{z} \Big| \right\} < \infty.$

The Hardy class for A(z)-analytic functions in the domain L(a,r) is denoted as $H_A^p(L(a,r))$. The norms in them are defined by the formula (see [8])

$$\|f\|_{H^p_A} = \sup_{|\psi(a,z)| < r} \left(\frac{1}{2\pi\rho} \int_{|\psi(a,z)| = \rho} |f(z)|^p |dz + A(z)d\bar{z}| \right)^{\frac{1}{p}} < \infty.$$

Further, from the inequality $b^q < b^p + 1$, 0 < q < p, $b \ge 0$ we conclude that $f \in H_A^p$ follows $f \in H_A^q$, i.e., $H_A^p \subset H_A^q$ for all p and q. Let us define a class of bounded functions

$$H_A^{\infty}(L(a,r)) = \left\{ f(z) \in O_A(L(a,r)) : \sup_{|\psi(a,z)| < r} \{|f(z)|\} < \infty \right\}.$$

The norm in $H_A^{\infty}(L(a,r))$ is defined as $\parallel f(z) \parallel_{H_A^{\infty}} = \sup_{z \in L(a,r)} \{|f(z)|\}$ (see [8]).

1.4. The Fatou's Theorems and Cauchy's Integral Formula for Hardy Class H_A^1

Now, we will consider the Fatou's theorem for the class of functions H^1_A .

Theorem 7 (see [8], the Fatou's theorem for the class of functions H_A^1). If $f(z) \in H_A^1(L(a,r))$, then the angular limit

$$f_{\triangleleft}^*(\zeta) = \lim_{z \to \zeta, z \in \triangleleft_{\zeta}} f(z)$$

exists and is finite for almost all $\zeta \in \partial L(a,r)$, except, perhaps, the points of some set E of measure zero.

The following statements follow from Theorem 7.

Theorem 8 (see [8]). If $f(z) \in H^1_A(L(a,r))$, then $f^*(\zeta) \in L^1_A(\partial L(a,r))$. As $\rho \to r$

$$\int_{|\psi(a,z)|=\rho} f(z) |dz + A(z)d\bar{z}| \longrightarrow \int_{|\psi(a,\zeta)|=r} f^*(\zeta) |d\zeta + A(\zeta)d\bar{\zeta}|$$
(9)

and

$$\int_{|\psi(a,z)|=\rho} |f(z) - f^*(\zeta)| \Big| dz + A(z) d\bar{z} \Big| \longrightarrow 0.$$
(10)

According to Cauchy integral formula (2), for lemniscates L(a, r)

$$f(z) = \frac{1}{2\pi i} \int_{|\psi(a,\xi)|=\rho} f(\xi)K(\xi,z) \left(d\xi + A(\xi)d\bar{\xi}\right),$$

we conclude that

$$f(z) = \frac{1}{2\pi i} \int_{|\psi(a,\zeta)|=r} f^*(\zeta) K(\zeta,z) \left(d\zeta + A(\zeta) d\bar{\zeta} \right). \tag{11}$$

This is the Cauchy integral formula for functions of H_A^1 .

We show a boundary uniqueness theorem for the Hardy class H_A^1 .

Theorem 9 (see [8]). Let $f(z) \in H^1_A(L(a,r))$. Suppose that for some set $M \subset \partial L(a,r)$ of positive measure $f^*(\zeta) = 0 \ \forall \zeta \in M$. Then, $f(z) \equiv 0$.

2. CARLEMAN'S FORMULA FOR A(z)-ANALYTIC FUNCTIONS

2.1. A(z)-Harmonic Measure of a Boundary Set

For a boundary measurable subset of a lemniscate L(a,r), the A(z)-harmonic measure $\omega(z,M,L(a,r))$ is defined very simply, according to the Poisson formula. If

$$\aleph_M(\zeta) = \begin{cases} -1, & \zeta \in M, \\ 0, & \zeta \in \partial L(a, r) \backslash M \end{cases}$$

is a characteristic function of the set $M \subset \partial L(a,r)$, then the A(z)-harmonic measure is

$$\omega(z, M, L(a, r)) = \frac{1}{2\pi r} \int_{|\psi(a, \zeta)| = r} P(z, \zeta) \aleph_M(\zeta) \left| d\zeta + A(\zeta) d\bar{\zeta} \right|. \tag{12}$$

Note that the A(z)-harmonic measure $\omega(z,M,L(a,r))$ is a A(z)-harmonic function inside the lemniscate L(a,r) and

$$-1 < \omega(z, M, L(a, r)) < 0.$$

Theorem 10. The function $\omega(z,M,L(a,r))$ either does not vanish anywhere, $\omega(z,M,L(a,r)) < 0$, or is identically zero, $\omega(z,M,L(a,r)) \equiv 0$. Moreover, $\omega(z,M,L(a,r)) \equiv 0$ if and only if the bounded set $M \subset \partial L(a,r)$ has measure zero.

Proof. If $\omega(z^0,M,L(a,r))=0$ at some inner point $z^0\in L(a,r)$, then according to the maximum principle for A(z)—harmonic functions $\omega(z,M,L(a,r))\equiv 0$. Now, if $\mathrm{mes}M=0$, then by definition

$$\omega(z,M,L(a,r)) = \frac{1}{2\pi r} \int_{|\psi(a,\zeta)|=r} P(z,\zeta) \aleph_M(\zeta) \left| d\zeta + A(\zeta) d\bar{\zeta} \right| = -\frac{1}{2\pi r} \int_M P(z,\zeta) \left| d\zeta + A(\zeta) d\bar{\zeta} \right| = 0.$$

If $\operatorname{mes} M > 0$, then $\omega(a, M, L(a, r)) < 0$, i.e., $\omega(z, M, L(a, r)) \neq 0$ in L(a, r). The theorem is proved. \square The following theorem is very important in qualitative estimates of A(z)-analytic functions.

Theorem 11. Let $M \subset \partial L(a,r)$ be a measurable boundary set of positive measure. Then, for almost all points $\zeta^0 \in M$ there exist radial (angular) limits $\omega^*(\zeta^0, M, L(a,r)) = -1$.

Proof. According to (12),

$$\omega(z, M, L(a, r)) = \frac{1}{2\pi r} \int_{|\psi(a, \zeta)| = r} P(z, \zeta) \aleph_M(\zeta) |d\zeta + A(\zeta)d\bar{\zeta}|,$$

where

$$\aleph_M(\zeta) = \begin{cases} -1, & \zeta \in M, \\ 0, & \zeta \in \partial L(a, r) \backslash M \end{cases}$$

is the characteristic function of the measurable set $M \subset \partial L(a,r)$. We put

$$d\mu(\zeta) = \aleph(\zeta) \left| d\zeta + A(\zeta) d\overline{\zeta} \right|.$$

Then, the measure μ will be finite on $\partial L(a,r)$, the measure of the arc $l_t = \{\psi(a,\zeta) = re^{i\tau}, 0 \le \tau \le t\}$ is

$$\mu(t) = \int_{l_t} \left| d\mu(\tau) \right|.$$

Using this formula, we parameterize $\zeta \in \partial L(a,r)$ through $-\pi < t \le \pi$, such that $\psi(a,\zeta) = re^{it}$, and denote $\mu(\zeta)$ through $\mu(t)$. According to the Radon-Nicodim theorem (see [1]), there is a derivative $\mu'(\zeta) = \mu'(t)$ at almost all points $\zeta \in \partial L(a,r)$, $\psi(a,\zeta) = re^{it}$. We fix a point $-\pi < t_0 \le \pi$, $\psi(a,\zeta_0) = re^{it_0}$ such that there is a finite derivative $\mu'(\zeta_0) = \mu'(t_0)$ and show that

$$\omega(z, M, L(a, r)) = \frac{1}{2\pi r} \int_{|\psi(a, \zeta)| = r} P(z, \zeta) d\mu(\zeta) = \frac{1}{2\pi r} \int_{|\psi(a, \zeta)| = r} \frac{r^2 - |\psi(a, z)|^2}{|\psi(\zeta, z)|^2} d\mu(\zeta)$$

tends to $\mu'(\zeta_0)$ with z tending to ζ_0 , inside any angle $\sphericalangle_{\zeta_0}$,

$$\lim_{z \to \zeta_0, z \in \mathcal{A}_{\zeta_0}} \omega(z, M, L(a, r)) = \mu'(\zeta_0).$$

Without lost of generality, for simplicity, assume that $\psi(a,\zeta_0)=re^{it_0}=r,\,t_0=0.$ We need to show that

$$\frac{1}{2\pi r} \int_{|\psi(a,\zeta)|=r} P(z,\zeta) d\mu(\zeta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t) \to \mu'(0) = -1,$$

at
$$\psi(a,z)=\rho e^{i\theta},$$
 $\rho e^{i\theta}\in \sphericalangle_{\zeta_0},$ $\rho\to r.$

Take $d\nu(t)=d\mu(t)-\frac{\mu'(0)}{r}\big|d\zeta+A(\zeta)d\bar{\zeta}\big|$. Then, $\nu'(0)=0$ and for any $\varepsilon>0$ there exists $\delta>0$, such that $|\nu(t)|\leq \varepsilon|t|$ for the arc $l_\delta=\{\psi(a,\zeta)=re^{it}, -\delta\leq t\leq \delta\}$. We have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t)$$

$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t) + \frac{1}{2\pi} \int_{-\pi + \delta}^{\pi - \delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t).$$

At ho
ightarrow r the last integral here tends to zero, because $r^2 -
ho^2
ightarrow 0$ and

$$|r^2 - 2\rho r \cos(t - \theta) + \rho^2| \ge c_\delta > 0,$$

so, for ρ sufficiently close to r,

$$\left| \frac{1}{2\pi} \int_{-\pi+\delta}^{\pi-\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t-\theta) + \rho^2} d\mu(t) \right| < \varepsilon$$

is fulfilled.

Next,

$$\begin{split} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t) &= \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\nu(t) \\ &+ \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} \left[\mu'(0) \frac{\left| d\zeta + A(\zeta) d\bar{\zeta} \right|}{r} \right] \\ &= \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\nu(t) + \mu'(0), \end{split}$$

where

$$\left| \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\nu(t) \right| \leq \frac{\varepsilon}{\pi} \int_{0}^{\delta} \left| \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} t dt \right|.$$

Direct calculation shows that at $\rho e^{i\theta} \in \sphericalangle_{\zeta_0}$ the next integral is bounded,

$$\int_{0}^{\delta} \left| \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} \right| t dt \le \tilde{c} = \text{const.}$$

Hence,

$$\left| \frac{1}{2\pi} \int_{0}^{\delta} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t) - \mu'(0) \right| \le \varepsilon + \tilde{c}\varepsilon$$

and since $\varepsilon>0$ is arbitrary, then at $\psi(a,z)=\rho e^{i\theta}$, $\rho e^{i\theta}\in \sphericalangle_{\zeta_0}, \rho\to r$

$$\frac{1}{2\pi r} \int_{|\psi(a,\zeta)|=r} P(z,\zeta) d\mu(\zeta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{r^2 - \rho^2}{r^2 - 2\rho r \cos(t - \theta) + \rho^2} d\mu(t) \to \mu'(0) = -1.$$

The theorem is proved.

2.2. Construction of a Quenching Function

Let $D \subset \mathbb{C}$ be a convex domain, $L(a,r) \subset \mathbb{C}$ be some lemniscate, on the boundary of which the set $M \subset \partial L(a,r)$ of positive measure is given. The task is to restore the function $f(z) \in H^1_A(L(a,r))$ to L(a,r) by its boundary values given not over the entire boundary $\partial L(a,r)$, as in (11), but only on M. Applying Carleman's simple idea, we will construct a "quenching" function that will allow us to get rid of (11) by integrating over $\partial L(a,r) \setminus M$. For this purpose, it is necessary to construct an auxiliary function $\varphi(z) \in H^\infty_A(L(a,r))$ satisfying two conditions:

- 1. $|\varphi^*(\zeta)| = 1$ almost everywhere on $\partial L(a, r) \backslash M$.
- 2. $|\varphi(z)| > 1$ at L(a, r).

This can be done by constructing the A(z)-harmonic measure $\omega(z,M,L(a,r))$ of the boundary set $M\subset \partial L(a,r)$. According to Theorem 10, $\omega(z,M,L(a,r))\in h_A(L(a,r)), -1\leq \omega(z,M,L(a,r))<0$ and

$$\omega^*(\zeta, M, L(a, r)) = \lim_{z \to \zeta, z \in \mathcal{A}} \omega(z, M, L(a, r)) = -1$$

almost everywhere at M and

$$\omega^*(\zeta, \partial L(a, r) \backslash M, L(a, r)) = \lim_{z \to \zeta, z \in \mathcal{A}} \omega(z, \partial L(a, r) \backslash M, L(a, r)) = 0$$

almost everywhere at $\partial L(a,r)\backslash M$.

Since $L(a,r)\subset C$ is simply connected, there is an A(z)-harmonic function v(z), conjugated to $\omega(z,M,L(a,r))$. Then, $\omega(z,M,L(a,r))+iv(z)=w(z)\in O_A(L(a,r))$. Consider function $\varphi(z)=e^{-w(z)}\in O_A(L(a,r))$. It satisfies the above conditions

$$|\varphi(z)| = e^{-\omega(z, M, L(a, r))} \le e$$

everywhere in L(a, r), i.e.,

$$\varphi(z) \in H_A^{\infty}(L(a,r)), \quad |\varphi^*(\zeta)| = e^{-\omega^*(\zeta,M,L(a,r))} = e^0 = 1$$

almost everywhere on $\partial L(a,r)\backslash M$ and

$$|\varphi(z)| = e^{-\omega(z, M, L(a, r))} > 1 \quad \forall z \in L(a, r).$$

This function is called the quenching function with respect to the set M.

2.3. The Carleman Formula in Class H_A^1

Now we prove an the Carleman formula.

Theorem 12. If $f \in H^1_A(L(a,r))$ and $M \subset \partial L(a,r)$ is the set of positive measure, then the formula

$$f(z) = \frac{1}{2\pi i} \lim_{m \to \infty} \int_{M} f^{*}(\zeta) \left[\frac{\varphi^{*}(\zeta)}{\varphi(z)} \right]^{m} K(\zeta, z) \left(d\zeta + A(\zeta) d\bar{\zeta} \right), \tag{13}$$

will be true for any point $z \in L(a,r)$. Moreover, the convergence in (13) will be uniform on compacts from L(a,r).

Proof. Note that for any fixed $m \in \mathbb{N}$, the function $f\varphi^m$ belongs to the Hardy class $H_A^1(L(a,r))$. Applying the Cauchy formula (11), we get

$$f(z)\varphi^{m}(z) = \frac{1}{2\pi i} \lim_{m \to \infty} \int_{\partial L(a,r)} f^{*}(\zeta) \left[\varphi^{*}(\zeta)\right]^{m} K(\zeta,z) \left(d\zeta + A(\zeta)d\overline{\zeta}\right), \tag{14}$$

further

$$f(z) = \frac{1}{2\pi i} \lim_{m \to \infty} \int_{\partial L(q,r) \setminus M} f^*(\zeta) \left[\frac{\varphi^*(\zeta)}{\varphi(z)} \right]^m K(\zeta, z) \left(d\zeta + A(\zeta) d\overline{\zeta} \right)$$

$$+\frac{1}{2\pi i}\lim_{m\to\infty}\int_{M}f^{*}(\zeta)\left[\frac{\varphi^{*}(\zeta)}{\varphi(z)}\right]^{m}K(\zeta,z)\left(d\zeta+A(\zeta)d\bar{\zeta}\right),\tag{15}$$

where $z \in L(a,r)$. As $m \to \infty$, the first integral in (15) tends to zero, because $|\varphi^*(\zeta)| = 1$ almost everywhere at $\partial L(a,r) \setminus M$, and

$$|\varphi(z)| = e^{-\omega(z, M, L(a, r))} > 1, \quad \forall z \in L(a, r).$$

Thus, the formula (13) has. The theorem is proved.

FUNDING

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

- 1. A. N. Kolmogorov and S. V. Fomin, *Elements of the Theory of Functions and Functional Analysis* (Nauka, Moscow, 1976) [in Russian].
- 2. L. A. Aizenberg, Carleman's Formulas in Complex Analysis (Kluwer Academic, Dordrecht, 1993).
- 3. N. M. Zhabborov and T. U. Otaboyev, "Cauchy's theorem for A(z)-analytic functions," Uzbek Math. J., No. 1, 15–18 (2014).
- 4. N. M. Zhabborov and T. U. Otaboyev, "An analogue of the Cauchy integral formula for A(z)-analytic functions," Uzbek Math. J., No. 4, 50–59 (2016).
- 5. A. Sadullayev and N. M. Jabborov, "On a class of *A*-analytic functions," J. Sib. Fed. Univ., Math.—Phys. **9**, 374—383 (2016).
- 6. N. M. Zhabborov, N. U. Otaboyev, and Sh. Y. Khursanov, "The Schwartz inequality and the Schwartz formula for *A*-analytic functions," J. Math. Sci. **264**, 703–714 (2022).
- 7. Sh. Y. Khursanov, "Some properties of A(z)-subharmonic functions," Bull. Natl. Univ. Uzbek.: Math. Nat. Sci. **4**, 474–484 (2020).
- 8. N. M. Zhabborov, Sh. Y. Khursanov, and B. E. Husenov, "Existence of boundary values of Hardy class functions H_A^1 ," Bull. Natl. Univ. Uzbek.: Math. Nat. Sci. 5, 79–90 (2022).
- 9. F. G. Avkhadiev, "Hardy type inequalities in higher dimensions with explicit estimate of constants," Lobachevskii J. Math. **21**, 3–31 (2006).
- 10. M. S. Martirosyan and S. V. Samarchyan, "*q*-Bounded systems: Common approach to Fisher–Micchelli's and Bernstein–Walsh's type problems," Lobachevskii J. Math. **25**, 197–216 (2007).

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.