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INTRODUCTION
Paragraph l. On a class of ,4(3)-analytic functions.
Solutions of the Beltrami eouation

{ = A(z){ o)az '"'Dz

are directly related to quasi-conformal mappings. With respect to the A(d function, it is measurable and

I't1a;l<cct
almost everylvhere in the domain under consideration D c C, where c : const. In the literature, the solu-
tions of Eq,. (l) are commonly called A(z)-analyticfunctions.

The work of Srebro and Yakubov I I ], which established a local theorem of the existence and unique-
ness of homeomorphic solutions of degenerate Beltrami equations, is written in geometric terms.

One of the fundamental works in the theory of Beltrami equations is a monograph by Gutlyanskii
et al. [2], which considers a geometric approach to the study of the Beltrami equation.

The solutions of Eq. (l), as well as quasi-conformal homeomorphisms in the complex plane C, have
been studied in sufficient details. In the introduction we confine ourselves to giving the references ([3-6])
and formulating the following three theorems;

Theorem I (see [5]). For any measurable on the complex plane function A(z), lllll_ . I there exists a
unique homeomorphic solution VQ\ of Eq. (l) which fixes the points 0,1,*.

Note that ifthe flunctionlA(al < c < l is defined only in the domain D c C., then it can be extended to
thewfroleC bysetting A(z\= 0 outside D,soTheorem l holdsforanydomain D c C.

Theorem 2 (see [3, 4l). A[l generalized solutions of Eq, (l) hqve theform -f (z) = flV(z)], where yt(z) is a
homeomorphic solulion in Theorem l, and F(d is a holomorphicfunction in the domain t4t(D). Moreover, if a

generaliTed solution f (a) has isolated singular points, then the holomorphicfunction F : "f o V-' also has iso-
laled singularities of the same types.

Theorem 2 implies that an A(z)-analytic function / carries out an internal (open) mapping, i.e.,
it maps an open set to an open set. It follows that the maximum principle holds for such functions: for any
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bounded domain  the maximum of the modulus is reached only on the boundary,
i.e., , . If the function is not zero, then the minimum principle also holds,

i.e., ,  (see [7]).

Theorem 3 (see [6]). If a function  belongs to the class , then every solution  of Eq. (1) also
belongs, at least, to the same class .

The aim of this paper is to investigate -analytic functions in a special case when the function 
is an anti-analytic function in a domain. This paper provides an overview and extends some boundary
properties of the class of holomorphic functions, such as [8, 9]. We introduce the angular limit for -
analytic functions. Section 1 investigates the behavior near the boundary of the derivative of the function,

-analytic inside the -lemniscate and with a bounded change of it at the boundary. Section 2 intro-
duces the complex Lipschitz condition for -analytic functions and proves Fatou’s theorem for -
analytic functions.

Let  be anti-analytic, i.e., , in  and such that , . We put

Then, according to (1), the class -analytic functions in  is characterized by the fact that .
Since an anti-analytic function is smooth, Theorem 3 implies that  (see [7]). In this case,
the following takes place:

Theorem 4 (analogue of Cauchy’s theorem [10]). If , where  is a domain with
rectifiable boundary , then

Now, we assume that the domain  is convex, and  is a fixed point in it. Consider the func-
tion

(2)

where  is a smooth curve which joins points of . Since the domain is simply connected and
the function  is holomorphic, the integral

does not depend on a path of integration; it coincides with a primitive, i.e.,  (see [7]).

Theorem 5 (see [7]).  is an -analytic function outside of the point , i.e., .
Moreover, at  the function  has a simple pole.

Remark 1 (see [7]). If a simply connected domain  is not convex, then the function

although well defined in , may have other isolated zeros except for  for .
Consequently, ,  when  and  is an -analytic function only in ,
it has poles at the points of . Due to this fact we consider the class of -analytic functions only in con-
vex domains.
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According to Theorem 2, the function  carries out an internal mapping. In particular,
the set

is open in . For suffiently small  it compactly belongs to  and contains the point . This set is
called an -lemniscate with the center  and denoted by . According to the maximum principle
the lemniscate  is simply connected and to the minimum principle it is connected (see [7]).

Theorem 6 (Cauchy formula [10]). Let  be an arbitrary convex domain and  be a subdo-
main, with piecewise smooth boundary . Then for any function  we have a formula

(3)

Paragraph 2. Class of -harmonic functions.
Let 
Theorem 7 (see [11]). The real part of the -analytic functions of  satisfies equation

(4)

in the domain of .
In connection with Theorem 7, it is natural to define the -harmonic function as follows.

Definition 1 (see [11]). A double differentiable function ,  is called -harmonic
in the domain  if it satisfies the differential Eq. (4).

The class of -harmonic functions in the domain of  is denoted as . Thus, the real part and
hence the imaginary part, of the -harmonic function are A(z)-harmonic functions in the domain of

. The inverse theorem is also true for simply connected domains.
Theorem 8 (see [11]). If the function is , where  is a simply connected domain, then

.
For -analytic and -harmonic functions, the following Dirichlet problem is naturally consid-

ered:
Dirichlet problem (see [11]). A bounded domain of  is given and a continuous function of  is set

at the boundary of . It is required to find -harmonic in the domain of  continuous on the closure of
the function of .
Theorem 9 (see [11]) (an analogue of the Poisson formula for -harmonic functions). If the 

function is continuous on the boundary of the lemniscate of , then the function

(5)

is the solution of the Dirichlet problem in .

The  function is an -analytic function for , where .

Then

Formula (5) is called an analogue of the Poisson formula for -harmonic functions.
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1. BEHAVIOR NEAR THE BOUNDARY OF THE DERIVATIVE OF THE FUNCTION,
-ANALYTIC INSIDE -LEMNISCATE AND WITH A BOUNDED CHANGE 

AT THE BOUNDARY OF THIS DOMAIN

Consider the function , -analytic inside the lemniscate  and continuous in a closed lem-
niscate , for which the values  at the boundary  form a function with a
bounded change. Then we will look at the following proposition:

Proposition 1. Let . The function  tends almost everywhere on the
boundary  to the values , when the point  approaches the radius of the point .

Proof. From (5) we represent  functions in the form of a Poisson integral, i.e.

where

is assumed.
By differentiating and integrating in parts, we can easily obtain:

From the last relation, according to Theorem 3, it follows that  tends almost everywhere on the lem-

niscate boundary to the values of , when the point  approaches the point  in radius.
Doing the same, we find:

from where, according to the same theorem, it follows that  tends almost everywhere on the boundary

 to the values of , when the point  approaches the point  in radius.
Therefore,

will tend to the values of , when  approaches the point  by radius, for all points on the
boundary , except for the set of points of measure zero, i.e., there is an open set  on which

, where  is the measure of the lemniscate boundary  and

μ(U) = . The last expression is converted to the form:

where  should mean the derivative of the function  at point , the boundary taken relative to the
points of this boundary lemniscate .
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Now let’s prove Vitali’s proposal:
Proposition 2. If the function  and bounded within a certain sector of the lemniscate

, tends along its bisector to a certain limit, then it tends to the same limit when the point  approaches the
vertex of the sector in an arbitrary way, remaining on the sector internal to the given one.

Proof. Taking the vertex of the lemniscate sector  as the origin, considering the sectors equal to
, the magnitude of the angle , we put

where , .

The sequence of functions  is uniformly bounded in this lemniscate  and converges to a
constant number at all points  satisfying condition

Therefore, according to Vitali’s theorem, this sequence must converge to the same constant uniformly
in a closed lemniscate  defined by inequalities

This also means that  tends to our limit when the point approaches the top of the lemniscate 
sector in any way, remaining in sector

which was required to be proved.

So, in the “radial” convergence, taking , , there will be , where
, .

2. FATOU’S THEOREM FOR -ANALYTIC FUNCTIONS

First, we prove Lipschitz conditions for -analytic functions. Let us put ,
, where .

Statement 1. If a function  and satisfies the Lipschitz condition

(6)

by  then in  it satisfies the complex Lipschitz condition for -analytic functions

(7)

where  are positive numbers.
Proof. It is easy to see that (7) will be proved if we prove two particular inequalities:

(8)

(9)

for any points  of the lemniscate . To prove (8), we can assume that . Now, the
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(10)

But

so from (10) follows (8) with .

Let us now prove (9). Let us say . Here, let us put . If the Lipschitz con-
dition (6) is satisfied, then the following inequality holds:

This last inequality follows directly from Cauchy’s formula for -analytic functions (3). If 

and therefore , then

If  and therefore , then , is also

In both cases, they received (9) with the proper . The statements are proven.

Let us consider a function  -analytic inside the lemniscate  and assume it to be
bounded; at the same time, we do not make a priori any hypothesis about the existence of limit values of
the function for boundary points . Fatou’s proposal consists of the following statement:

Theorem 10. The function  bounded inside the lemniscate  tends almost every-
where on the boundary  to certain values , when point  approaches point  along any tangent
path.

Since any nontangent to the boundary path belonging to lemniscate  and ending at point ,
, can be enclosed inside the corner with vertex  contained in the lemniscate, the boundary

values for all nontangent to the boundary paths inside the lemniscate can be characterized as angular
boundary values.

Proof. For proof, consider function

(11)

Noting that for  at , it is easy to show the existence of boundary values of the func-
tion  on the boundary, regardless of the path of the point . In fact, let  and  be any two
paths inside lemniscate  connecting point  with point  border .

(12)

Denoting by  a closed contour formed by a set of lines  and , we reduce the question to the proof
of the relation
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By connecting two points of contour  with an auxiliary line, lying respectively at  and  arbitrarily
close to , we divide  into the sum of two closed lines, and the length  of one of them (containing
point ) is arbitrarily small. Accordingly, the integral along  of the function  will be replaced by an
integral along the contour of length , whence we conclude that

Since  can be made any small positive number, 

So, equality (12) is proved, and thus it is found that the function  is continuous in a closed lemnis-
cate .

Further, it is clear from formula (11) that the values of this function on  satisfy the complex Lip-
schitz condition for -analytic functions, i.e.

where .
Having noticed that the function satisfying the Lipschitz condition for -analytic function will be a

fortiori with a bounded change, we can attach the previous section to the  proposition. As a result of
this proposition  tends to a certain limit almost everywhere on the boundary when the point
approaches the radius of the points of the boundary .

Note 2. This statement can also be established on the basis of the following considerations.

Due to condition  and transformations , the expression

represents a family equally absolutely continuous on the segment , and, therefore, by virtue of The-
orem 3 and the proof of Proposition 1, the function  is represented by the following integral:

where  is a bounded change at the boundary . We will assume that at any points  the bound-
ary is given by the function , with a bounded change at the boundary  and applying then the
Proposition 1:

where , with “radial” convergence , from this we learn about the existence of radial
boundary values of the function  almost everywhere on the boundary .

If we use Proposition 2, we will see that the function  will tend to a certain limit when the point 
approaches the point  of the boundary along any nontangential paths, for any point  for which there is
a radial boundary value. Since the latter circumstance takes place almost everywhere on the boundary

, Fatou’s theorem is thus fully proved.
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