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Abstract. The so-called functional approach turned out to be very efficient in the study of various issues arising in the theory of
approximate integration and partial differential equations and related branches of analysis.
The essence of this approach (if we confine ourselves to the example of a boundary value problem for a differential equation) is
that the differential equation with the boundary conditions is implemented as an operator acting in a specially selected functional
space; the required information is obtained from the properties of this operator.
S.L. Sobolev developed an algorithm for constructing cubature formulas, which he called formulas with a regular boundary layer.
He proved the asymptotic optimality of these formulas and the upper-bound estimate of the norm of the error functional in space
Um

2 (Ω), setting the principal term.
The purpose of this study is to obtain a lower estimate (i.e., a lower bound) for any error functional of lattice cubature formulas
for spaces Hµ

p (Ω) and determine the asymptotical optimality of cubature formulas with a regular in the sense of Sobolev boundary
layer in space Hµ

p (Ω).

INTRODUCTION

S.L. Sobolev in [1, 2, 3] developed an algorithm for constructing cubature formulas, which he called formulas with a
regular boundary layer in space Um

2 (Ω). The same result was obtained in spaces Hµ

2 (Ω) in [4, 5]; in [6], the validity
of similar results for spaces Hµ

p (Ω) was stated. When estimating the norm of the error functional of such formulas,
the researchers used the explicit form of the extremal function of periodic functional `∞ (x) = 1−hn

∑
γ

δ (x−hHγ) in

these spaces and the Hilbert property of such spaces. In the case of Banach spaces, the study of the behavior of such
formulas is a very difficult task. In [7], the best approximation of the integral over the period of periodic functions
of several variables was considered using a finite sum - a linear combination of function values at points of a given
regular lattice. Similar results were obtained in the S.L. Sobolev space (see [8, 9, 10, 11, 12, 13, 14]).

1) Notation and preliminary information.
En is the n-dimensional real Euclidean space of points x = (x1,x2, . . . ,xn), y = (y1,y2, . . . ,yn), z = (z1,z2, . . . ,zn), . . .
α, β , γ, . . . are the vectors with integer coordinates αi, βi, γi = 0,±1,±2, ....(i= 1,2, ...n), |α|=α1+α2+ ....+αn.

The iiner product of n-dimensional vectors x and y is denoted by

x · y = x1y1 + x2y2 + ...+ xnyn.

C denotes the space of continuous functions with the norm
‖ f (x)|C‖= max

x
| f (x)|

F is the Fourier transform operator,
F [ f (x)](ξ ) =

∫
En

f (x)e−2πixξ dx =
∫

En

f (x1, ...,xn)e−2πi(x1ξ1+...+xnξn)dx1...dxn.

F−1[ f (x)](ξ ) =
∫

En

f (x)e−2πixξ dx, where i =
√
−1.

For absolutely integrable functions f (x) and ϕ(x), the convolution is defined as:

f (x)∗ϕ(x) =
∫
En

f (x− y)ϕ(y)dy

In what follows, we use the basic concepts of the theory of generalized functions [15].
The space S is taken as the space of basic functions, consisting of infinitely differentiable functions decreasing to

infinity with all derivatives faster than any negative power of |x|=
√

n
∑

i=1
x2

i .
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Spaces of generalized function over S, as usual, are denoted by S′ [15]. The action of the generalized function `(x)
on the main function f (x) is denoted by < `(x), f (x)> .

Let H be the matrix of order n× n , detH = 1. Ordinary function f (x) defined in En is called a periodic function

with the leading matrix of periods H(
↑

h(1) , . . .
↑

h(n) ) (H-periodic), if for any β ∈ Zn

f (x+Hβ ) = f (x),

where each period
↑

h(k) , k = 1,2, ...,n is a column vector:

↑
h(k) =



↑

h(k)1

...
↑

h(k)n


Consider the space of points En; we identify all points differing by vectors Hβ , β ∈ Zn. Zn is the set of all vectors

with integer coordinates. The resulting manifold of equivalent points is an n-dimensional torus θ . We call this torus
the fundamental domain for periodic functions. With several cuts, such a torus can be turned into a simply connected
region, and in different ways. One of the ways leads to a parallelepiped. Any domain mapped uniquely to the entire
torus we call a fundamental domain in En. Denoting the characteristic function of the points of domains Ω0 by εΩ0(x),
we write the necessary and sufficient conditions for Ω0 to be the fundamental domain in En in the following form:

∑
β∈Zn

εΩ0(x+Hβ ) = 1.

Thus, a connection between matrix H and domain Ω0, is, generally speaking, multi-valued.
Here, from fundamental domains defined by matrix H, we consider only a parallelepiped.
If u(x) is a generalized or ordinary H-periodic function, and ϕ(x) ∈ C̃∞, is H - periodic function, then

< u(x),ϕ(x)>
de f
=
∫

Ω0

u(x)ϕ(x)dx.

2) The spaces H̃µ
p (Ω0).

Let µ(x) be a continuous line, whose growth is not higher than the power law. The space H̃µ
p (Ω0) is defined as the

space of H - periodic generalized functions with the norm∥∥ f (x)|H̃µ
p (Ω0)

∥∥={ ∫
Ω0

∣∣∣∣∑
γ

µ(H−1
γ ) f̂ (γ)e−2πi(γ,H−1

x )

∣∣∣∣pdx

} 1
p

for 1≤ p < ∞∥∥ f (x)|H̃µ
p (Ω0)

∥∥= sup
γ

{∣∣ f̂ (γ)∣∣µ(H−1
γ )
}

for p = ∞.
Obviously, the space H̃µ

p (Ω0) is isometrically isomorphic to space Lp(Ω0).
3) Weight functions.
Let 1≤ p < ∞. Denote by B(n, p) (see [16]) the class of functions µ(ξ ) = µ(ξ1,ξ2, ...,ξn) ∈C∞ such that for some

constant m = m(µ)

µ
p
p (µ(ξ +n)/µ(ξ ))≤ η

(
1+ |η |2

)m/2

is true for any n ∈ En and the same is true for µ−1(ξ ). It follows from the definition that functions µ(ξ ), µ−1(ξ ) are
multipliers in the space S, i.e., µ(ξ ) ·ϕ(ξ ) ∈ S once ϕ(ξ ) ∈ S since µ(ξ ) ∈C∞ and µ−1(ξ ),µ(ξ ) ≤

(
1+ |ξ |2

)m/2,
which follows from µ

p
p ∈ L∞.
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4) The space Hµ
p (En).

We say that the generalized function u(x) ∈ S′ belongs to space Hµ
p (En) if

ν(x) = F−1 {µ(ξ )F [u(x)](ξ )}(x) ∈ Lp(En).

Introducing the norm ∥∥u(x)|Hµ
p (En)

∥∥= ∥∥ν(x)|Lp(En)
∥∥ , u(x) ∈ Hµ

p (En)

we get a space isometrically isomorphic to space Lp(En).
5) Space Hµ

p (Ω).
Let Ω be a bounded domain with a sufficiently good boundary ∂Ω in En. Denote the closure of the set C∞

0 (Ω) in

norm
∥∥�|Hµ

p (En)
∥∥ by

0
H µ

p (Ω) and introduce the space

Hµ
p (Ω) = Hµ

p (En)/
0
H µ

p (En\Ω)

with the norm ∥∥u(x)|Hµ
p (Ω)

∥∥= inf
∥∥uc(x)|Hµ

p (En)
∥∥ , u(x) ∈ Hµ

p (Ω),

where the lower bound is taken over all extensions of the element u(x) ∈ Hµ
p (Ω) up to the element uc(x) ∈ Hµ

p (En).
Then Hµ

p (Ω) becomes a Banach space.

STATEMENT OF THE PROBLEM

1) Cubature formulas.
Cubature formulas are formulas of the following form:∫

Ω

f (x)dx≈
N

∑
λ=1

Cλ f (x(λ )). (1)

Here Ω is a bounded domain with a fairly good boundary ∂Ω, Cλ are the coefficients (or weights), x(λ ) are the nodes,
N is the number of nodes.

Here we consider cubature formulas with nodes located on the lattice {q0 +Aγ; γ ∈ Zn}, where q0 is the fixed
vector and γ runs through all Zn - the set of integer vectors, A denotes matrix detA 6= 0.

To the cubature formula (1), we assign the functional

`( f ) =
∫
Ω

f (x)dx−
N

∑
λ=1

Cλ f (x(λ )), (2)

the so-called error functional.
This functional corresponds to the generalized function

`(x) = εΩ(x)−
N

∑
λ=1

Cλ δ (x− x(λ )), (3)

where εΩ(x) is the characteristic function of domain Ω, δ (x− x(λ )) is the delta function concentrated at point x(λ ).
2) Cubature formulas in the space of periodic functions H̃µ

p (Ω0).
It is known that the optimal formula in these spaces has the following form:

∫
Ω0

f (x)dx≈ ∑
0≤λi<Ni
i=1,2,..,n

Cλ f (hλ ),
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where Ω0 is the unit cube, h > 0, is the small parameter, N = h−n, i.e. N = mesΩ

hn , Cλ = C0 are constant. Their
expressions are determined, but not given here. Note that the formula is called optimal when the norm of the error
functional is the least:

inf
Cλ

∥∥`(x)|H̃µ
p (Ω0)

∥∥ .
The norm of the error functional of the optimal cubature formula has the following form:

∥∥∥∥0
`(x)|H̃µ

p
∗(Ω0)

∥∥∥∥=

∫

Ω0

∣∣∣∣∣ 1
µ(0)

−C0 ∑
γ

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

. (4)

It is also known that the formula of rectangles∫
Ω0

f (x)dx≈ hn
∑

0≤λi<Ni
i=1,2,..,n

f (hλ ) (5)

is asymptotically optimal, i.e. the ratio of the norm of the cubature formula of rectangles to the norm of the optimal
cubature formula tends to 1 as h→ 0.

The norm of the error functional of the cubature formula of rectangles has the following form:

∥∥`rec(x)|H̃µ
p
∗(Ω0)

∥∥=

∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

(6)

We are interested in the extremal function of the error functional of the cubature formula of rectangles in the space
H̃µ

p (Ω0), i.e. the function on which the maximum value of the error functional is reached. The extremal function of
the error functional of the cubature formula of rectangles `rec(x) has the following form:

u∞(x) = ∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
∗

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q−1

sign ∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)
(7)

This function is h-periodic in each variable. The following function

u(x) =

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q−1

sign ∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)
(8)

is also h-periodic in each variable (hE, where E is the identity matrix) or H = hE-periodic function.
In [16], an upper bound was obtained for the norm of the error functional with regular in the sense of S.L. Sobolev

boundary layer in spaces Hµ
p (Ω).

The main task of this study is to obtain a lower estimate (i.e., a lower bound) for any error functional of lattice
cubature formulas for spaces Hµ

p (Ω):

(mesΩ)
1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

[1+o(1)]≤
∥∥`(x)|H̃µ

p
∗(Ω)

∥∥ (9)

Since
∥∥∥`opt(x)|Hµ

p
∗
(Ω)
∥∥∥≤ ∥∥`(x)|Hµ

p (Ω)
∥∥ it suffices to show a lower bound for the functional of the optimal cubature

formula, i.e. for `opt(x). A function

u(x) =

∣∣∣∣∣∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣
q−1

· sign ∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
(10)
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is an extremal function of the functional

< ∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
, f (x)>Ω, f (x) ∈ L̃p(Ω0)

This functional takes zero values in the subspace of constants of space L̃p(Ω0)- the space of periodic functions
summable with power p over the cube. Therefore, it reaches its maximum value in subspace L̃p(Ω0), i.e. on functions
f̂ [0] with zero coefficients.
Therefore, u(x) has the following form:

u(x) = ∑
γ 6=0

û[γ]e2πih−1(γ,x) (11)

where û[γ] =
∫

Ω0

u(x)e2πih−1(γ,x)dx , û [0] = 0.

The function u∞(x), (like h-periodic one), can be represented as a Fourier series:

u∞(x) = ∑
γ 6=0

û[γ] · e2πih−1(γ,x)

µ(h−1γ)
, û∞ [0] = 0 (12)

u∞(x) is a continuous function.

LOWER BOUND FOR THE NORM OF THE ERROR FUNCTIONAL OF LATTICE
CUBATURE FORMULAS IN Hµ

p (Ω)

In [6] and [16], an upper bound was obtained for the norm of the error functional with regular in the sense of Sobolev
boundary layer in spaces Hµ

p (Ω), i.e. the inverse inequality to inequality (9) for the error functional of cubature
formulas `r.b.l (x) with a boundary layer regular in the sense of Sobolev. In this article, the authors obtain a lower
bound for an arbitrary error functional of lattice cubature formulas in spaces Hµ

p (Ω).
Theorem 1. Let 1 < p < ∞, µ(ξ ) ∈ B∗n,p and µ(−ξ ) = µ(ξ ) then for any error functional of lattice cubature

formulas in spaces Hµ
p (Ω) the following estimate (see. [6, 16]) is valid

∥∥`(x)|Hµ
p
∗(Ω)

∥∥≥ (mesΩ)
1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

[1+o(1)]. (13)

The proof is based on three lemmas. Since the norm of the error functional of the optimal lattice cubature formula
satisfies the following inequality ∥∥`opt(x)|Hµ

p
∗(Ω)

∥∥≤ ∥∥`(x)|Hµ
p
∗(Ω)

∥∥
then it is suffice to prove the theorem for the error functional of the optimal cubature formula.

Let us build a function that will allow us to get a lower bound. For simplicity, without loss of generality, we assume
that µ(0) = 1.

To do this, consider the following function

0
u(x) = ∑

γ 6=0
û[γ]e2πih−1(γ,x)−C(h) = u(x)−C(h)

where C(h) = ∑
γ 6=0

û[γ]
µ(h−1γ)

.

We construct the following function ϑ(x) = υ(x)∗
[

0
u(x) · ε

Ω
′ (x)
]
,
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where Ω
′

is the domain of the sets of all cubes with edges of length h that intersect with Ω. Let us pose another
condition on domain Ω- the quantity O(h) is the measure of the boundary layer of the thickness divisible by h . This
condition is also posed when obtaining an upper bound for the norm of the error functional with a regular boundary
layer.

Let us estimate norm ϑ (x) in Hµ
p (Ω):

∥∥ϑ(x)|Hµ
p (Ω)

∥∥=

∫
En

∣∣F−1 [µ(ξ ) ·F [ϑ(x)]]
∣∣pdx


1
p

=


∫
En

∣∣∣∣F−1
[

µ(ξ ) ·F
[

υ(x)∗
[

0
u(x) · ε

Ω
′ (x)
]]]∣∣∣∣pdx


1
p

=


∫
En

∣∣∣∣F−1
[

µ(ξ ) · 1
µ(ξ )

F [
0
u(x) · ε

Ω
′ (x)]

]∣∣∣∣pdx


1
p

=


∫
En

∣∣∣∣0u(x) · εΩ
′ (x)
∣∣∣∣pdx


1
p

=


∫
Ω
′

∣∣∣∣0u(x)∣∣∣∣pdx


1
p

=


∫
Ω
′

|u(x)−C(h)|pdx


1
p

≤


∫
Ω
′

|u(x)|pdx


1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p

=


∫
Ω
′

∣∣∣∣∣∣
∣∣∣∣∣∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣
q−1

· sign ∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣∣
p

1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p
(1+O(h))

=

∑
β∈B

∫
Ωh,β

∣∣∣∣∣∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p
(1+O(h))

=

∑
β∈B

hn
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p
(1+O(h))

=

{
∑

β∈B
hn

} 1
p

∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p
(1+O(h))

=
(

mesΩ
′
) 1

p
(1+O(h))


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

+ |C(h)| ·
(

mesΩ
′
) 1

p
(1+O(h)).

(14)

Here B is the set of such β for which all cubes Ωh,β intersect with domain Ω:
Ωh,β

⋂
Ω =∅ and Ωh,β = {x : hβk ≤ xk < h(βk +1)}.

The following lemma is true
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Lemma 1. The following equality holds

−C(h) =
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx (15)

To prove Lemma 1, we use the following lemmas.
First, we consider Lemma 2.
Lemma 2. The following equality is true

υ(x)∗ 0
u(x) = ∑

γ 6=0

û[γ]
µ(h−1γ)

e2πih−1(γ,x)−C(h) (16)

Proof. Let ϕ(x) ∈ S then using Parseval’s equality and bearing in mind that F−1
[

1
µ(ξ )

δ (ξ −hγ)
]
= e2πih−1(γ,x)

µ(h−1γ)
, we

obtain

< υ(x)∗ 0
u(x),ϕ(x)>=< F [υ(x)∗ 0

u(x)](ξ ),F [ϕ(x)](ξ )>

=< F [υ(x)](ξ )∗F [
0
u(x)](ξ ),F [ϕ(x)](ξ )>

=<
1

µ(ξ )
·

[
∑
γ 6=0

û(γ)F
[
e2πih−1(γ,x)

]
−F [C(h)]

]
, F [ϕ(x)](ξ )>

=<
1

µ(ξ )
·∑

γ 6=0
û(γ)δ (ξ −hγ)− 1

µ(ξ )
·C(h)δ (ξ ), F [ϕ(x)](ξ )>

=< ∑
γ 6=0

1
µ(ξ )

· û(γ)δ (ξ −hγ)− C(h)
µ(ξ )

·δ (ξ ), F [ϕ(x)](ξ )>

=< ∑
γ 6=0

û(γ)
µ(h−1ξ )

·e2πih−1(γ,x)−C(h), ϕ(x)>,

(17)

this proves Lemma 2.
We introduce notation

u∞(x) = ∑
γ 6=0

û[γ]e2πih−1(γ,x)

µ(h−1γ)
= υ(x)∗u(x)

and

0
u ∞(x) = ∑

γ 6=0

û[γ]e2πih−1(γ,x)

µ(h−1γ)
−C(h).

Functions u∞(x) and
0
u ∞(x) are extremal functions for the functional

1−hn
∑
γ

δ (x−hγ). (18)

Then, we prove the following lemma
Lemma 3. The following equality holds for the functional 1−hn

∑
γ

δ (x−hγ)

[
1−∑

γ 6=0
hn

δ (x−hγ)

]
∗υ(x) = ∑

γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
. (19)
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Proof. Let ϕ ∈ S. Then, using Parseval’s equality, we have, firstly

< F

[
∑
γ

δ

( x
h
− γ

)]
(ξ ), F [ϕ(x)](ξ )>=< ∑

γ

δ

( x
h
− γ

)
,ϕ(x)>

= hn < ∑
γ

δ (y− γ),ϕ(hy)>=< hnF

[
∑
γ

δ (y− γ)

]
(ξ ), F [ϕ(hy)](ξ )>

= hn < ∑
γ

δ (y− γ),F [ϕ(hy)](ξ )> .

Since

F [ϕ(hy)](ξ ) =
∫
En

ϕ(hy)e2πiξ ydy =h−n
∫
En

ϕ(z)e2πiξ zh−1
dz =h−nF [ϕ(z)](h−1

ξ ).

We obtain

< F

[
∑
γ

δ

( x
h
− γ

)]
(ξ ), F [ϕ(x)](ξ )>= hn < ∑

γ

δ (y− γ),F [ϕ(x)](h−1y)>

= hn < ∑
γ

δ

( z
h
− γ

)
,F [ϕ(x)](z)h−n >=< ∑

γ

δ

( z
h
− γ

)
,F [ϕ(x)](z)> .

From this equality follows

F

[
∑
γ

δ

( x
h
− γ

)]
(ξ ) = ∑

γ

δ

(
ξ

h
− γ

)
. (20)

Then we obtain

< F

[
1−∑

γ

hn
δ (x−hγ)

]
(ξ ), F [ϕ(x)](ξ )>=< 1−hn

∑
γ

δ (x−hγ),ϕ(x)>

=< 1−∑
γ

δ

( x
h
− γ

)
,ϕ(x)>= hn < 1−∑

γ

δ (y− γ),ϕ(hy)>

= hn < F

[
1−∑

γ

δ (y− γ)

]
(ξ ), F [ϕ(hy)](ξ )>= hn < δ (ξ )−∑

γ

δ (ξ − γ), F [ϕ(hy)](ξ )>

= hn < ∑
γ 6=0

δ (ξ − γ), F [ϕ(hy)](ξ )>= hn < ∑
γ 6=0

δ (ξ − γ), h−nF [ϕ(z)](h−1
ξ )>

=< ∑
γ 6=0

δ (ξ − γ), F [ϕ(z)](h−1
ξ )>= hn < ∑

γ 6=0
δ (x−hγ), F [ϕ(z)](x)>

=< ∑
γ 6=0

δ
(
x−h−1

γ
)
, h−nF [ϕ(z)](x)> .

Hence

F

[
1−∑

γ

hn
δ (x−hγ)

]
(ξ ) = ∑

γ 6=0
δ
(
x−h−1

γ
)

(21)
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With (21), we obtain

<

[
1−∑

γ

hn
δ (x−hγ)

]
∗υ(x),ϕ(x)>

=< F

[
1−∑

γ

hn
δ (x−hγ)

]
(ξ ) ·F [υ(x)](ξ ),F [ϕ(x)] (ξ )>

=< ∑
γ 6=0

δ
(
ξ −h−1

γ
)
· 1

µ(ξ )
,F [ϕ(x)](ξ )>=< ∑

γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
,ϕ(x)> . (22)

This equality implies the proof of Lemma 3.

Since functions u∞(x) and
0
u ∞(x) are extremal functions for the functional 1−hn

∑
γ

δ (x−hγ), then using Lemma 3

we have

< 1−hn
∑
γ

δ (x−hγ),u∞(x)>Ω0 =< 1−∑
γ

hn
δ (x−hγ),υ(x)∗u(x)>Ω0

=<

[
1−∑

γ 6=0
hn

δ (x−hγ)

]
∗υ(x),u(x)>Ω0 =<

[
∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

]
,u(x)>Ω0

=<

[
∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

]
,

∣∣∣∣∣∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣
q−1

sign ∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)
>Ω0 =

∫
Ω0

∣∣∣∣∣∑
γ 6=0

e2πih−1(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx. (23)

Equality (23) proves that ∥∥∥∥∥1−hn
∑
γ

δ (x−hγ)|H̃µ∗
p (Ω0)

∥∥∥∥∥
q

=
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx. (24)

Now let us prove another equality:

< 1−hn
∑
γ

δ (x−hγ),
0
u ∞(x)>Ω0 =< 1,

0
u ∞(x)>Ω0−< hn

∑
γ

δ (x−hγ),
0
u ∞(x)>Ω0

=
∫

Ω0

0
u ∞(x)dx =−C(h).

(25)

Here we have taken into account that
0
u ∞(hγ) = 0 and

∫
Ω0

u∞(x)dx = 0.

With equality

< 1−hn
∑
γ

δ (x−hγ),
0
u ∞(x)>Ω0 =< 1−hn

∑
γ

δ (x−hγ), u∞(x)>Ω0 (26)

we obtain

−C(h) =
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(hγ)

∣∣∣∣∣
q

dx.

Lemmas 2 and 3 imply the proof of Lemma 1.
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From (14) and (15) it follows

∥∥ϑ(x)|Hµ
p (Ω)

∥∥= (mes Ω)
1
p (1+O(h))


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

+(mes Ω)
1
p (1+O(h))

∫
Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx

= (mes Ω)
1
p (1+o(h))


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p
1+


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q


= (mes Ω)
1
p (1+o(1.)


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

.

(27)

Here we mean that

{ ∫
Ω0

∣∣∣∣∣ ∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx

} 1
q

= o(1) , 1
p +

1
q = 1.

Next, we show that

< `(x),ϑ(x)>= (mes Ω)
1
p (1+o(1))

∫
Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx. (28)

We modify ϑ(x) as:

ϑ(x) = υ(x)∗ϑ(x) = υ(x)∗
[

0
u(x) · ε

Ω
′ (x)
]

= υ(x)∗
[

0
u(x) ·

[
ε

Ω
′ (x)+ εEn/Ω

′ (x)− εEn/Ω
′ (x)

]]

= υ(x)∗
[

0
u(x) · εEn(x)

]
−υ(x)∗

[
0
u(x) · εEn/Ω

′ (x)
]

= υ(x) · 0u(x)−υ(x)∗
[

0
u(x) · εEn/Ω

′ (x)
]

=
0
u ∞(x)−υ(x)∗

[
0
u(x) · εEn/Ω

′ (x)
]

So

< `(x), ϑ(x)>=< `(x),
0
u ∞(x)>−< `(x), υ(x)∗

[
0
u(x) · εEn/Ω

′ (x)
]
>

=< εΩ(x)− ∑
β∈B′

0
C β δ (x−hβ ),

0
u ∞(x)·εΩ

′ (x)>−< `(x), υ(x)∗
[

0
u(x) · εEn/Ω

′ (x)
]
> .

Since
0
u ∞(hβ ) = 0, then the first term is

< εΩ(x)− ∑
β∈B′

0
C β δ (x−hβ ),

0
u ∞(x)>=

∫
Ω

0
u ∞(x) =−C(h) ·mes Ω = mesΩ

∫
Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx. (29)
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Let us show that the second term is:

< `onm(x)∗υ(x),
0
u(x)εEn/Ω

′ (x)>= o(−C(h)). (30)

Indeed, firstly

< `opt(x)∗υ(x),
0
u(x)εEn/Ω

′ (x)>=
∫

En/Ω
′

[`opt(x)∗υ(x)][u(x)−C(h)]dx

=
∫

En/Ω
′

[`opt(x)∗υ(x)]u(x)dx−C(h)
∫

En/Ω
′

[`opt(x)∗υ(x)]dx

= ∑
β
′∈R/B

∫
Ω

h,β ′

[`opt(x)∗υ(x)]u(x)dx−C(h) ∑
β
′∈R/B

∫
h,β ′

[`opt(x)∗υ(x)]dx

≤ ∑
β
′∈R/B


∫

Ωh,β

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

∫

Ωh,β

|u(x)|pdx


1
p

+C (h) ∑
β
′∈R/B

h
n
p


∫

Ωh,β

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

.

(31)

Because of the h-periodicity of u(x), all{ ∫
Ωh,β

|u(x)|pdx

} 1
p

are equal to each other, and equal to

{
hn ∫

Ω0

∣∣∣∣∣ ∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx

} 1
p

So, from (31) we obtain

< `opt(x)∗υ(x),
0
u(x)εEn/Ω

′ (x)>≤

hn
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

· ∑
β
′∈R/B


∫

Ω
h,β ′

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

+ |C(h)|h
n
p ∑

β
′∈R/B


∫

Ωh,β

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

hn
∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p


∫
En/Ω

′

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

+ |C (h)|h
n
p


∫

En/Ω
′

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q
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= h
n
p


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

∫
En

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

+ |c(h)|h
n
p


∫
En

∣∣`opt(x)∗υ(x)
∣∣qdx


1
q

≤ h
n
p


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

∫
En

∣∣`p.n.c(x)∗υ(x)
∣∣qdx


1
q

+ |c(h)|h
n
p


∫
En

∣∣`p.n.c(x)∗υ(x)
∣∣qdx


1
q

≤ h
n
p


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

(mesΩ)
1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

(1+o(1))

+ |C (h)|h
n
p


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
p

(mesΩ)
1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx


1
q

(1+o(1))

= h
m
p (mesΩ)

1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx

+h
m
p |C (h)|(mesΩ)

1
q

∫
Ω0

∣∣∣∣∣∑
γ 6=0

e2πi(γ,x)

µ(h−1γ)

∣∣∣∣∣
q

dx

= h
m
p (mesΩ)

1
q |C (h)|+h

m
p (mesΩ)

1
q |C (h)|2 = h

m
p |C (h)|(1+ |C (h)|)(mesΩ)

1
q = o(−|C (h)|) .

(32)

The proof of Theorem 1 follows from (29), (30), (31), and (32).
Note that the following theorem was proved in [17] for a cubature formula with a regular boundary layer.
Theorem 2. If 1 < p < ∞,µ (ξ ) ⊂ B(n, p), then in space Hµ

p (Ω), the norm of the error functional of a cubature
formula with the regular in the sense of S.L.Sobolev boundary layer satisfies the following inequality

∥∥`(x)|Hµ
p
∗(Ω)

∥∥≤ (mesΩ)
1
q


∫

Ω0

∣∣∣∣∣∑
γ 6=0

exp
(
2πih−1H−1x

)
µ(γH−1)

∣∣∣∣∣
q

dx


1
q

+O(hm+1), (33)

as h→ 0. Here H is matrix n×n, |H|= 1, Ω0 is the fundamental domain defined by matrix H.
From the proved Theorem 1 and the results given in [5, 17], in particular, from Theorem 2, follows
Theorem 3. If 1 < p < ∞, µ(ξ ) ∈ B∗n,p and µ(−ξ ) = µ(ξ ), then the cubature formula with the regular in the

sense of S.L.Sobolev boundary layer is asymptotically optimal in space Hµ
p (Ω).

CONCLUSION

To estimate the norm of the error functional of a cubature formula with the regular in the sense of Sobolev boundary

layer in space Hµ
p (Ω), the authors used the explicit form of the extremal functions u∞ (x) and

0
u∞ (x) of the periodic

functional 1−hn
∑
γ

δ (x−hγ) in this space and the Hilbert property of such spaces. In the case of Banach spaces, the

study of the behavior of such formulas is a very difficult task.
In [17], an upper bound was obtained for the norm of the error functional with the regular in the sense of Sobolev

boundary layer in space Hµ
p (Ω), i.e., the inverse inequality to the inequality for the error functional of the cubature

formulas `p.n.c (x) with the regular in the sense of Sobolev boundary layer.
In this paper, the authors obtained a lower bound for an arbitrary error functional of lattice cubature formulas in

spaces Hµ
p (Ω). Since the norm of the error functional of the optimal lattice cubature formula satisfies inequality∥∥∥`opt(x)|Hµ

p
∗
(Ω)
∥∥∥≤ ∥∥`(x)|Hµ∗

p (Ω)
∥∥, it suffices to prove the theorem for the error functional of the optimal cubature

formula. The developed function v(x) allowed the authors to obtain the lower bound.
Since, by virtue of (1), the authors obtained the upper and lower bounds for the norm of the error functional with the

regular in the sense of Sobolev boundary layer in space Hµ
p (Ω), this implies the asymptotic optimality of the cubature

formula with the regular in the sense of Sobolev boundary layer in this space.
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