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Weight Optimal Order of Convergence Cubature Formulas in
Seholev Space

Ozodjon Jalolov®
Bukhara State University, Bukhara 2001 17, Uzbekistan
4 Corresponding awhor: o _jalolov@® mail.ne

Abstract.  In this paper we mvestigate weight cubature formula in function spaces of S1. Sobalev L';‘.L},". l-.;"' for the
functions defined I the n - dimensional unit cube A, and obtain an upper esti for the morm of error functionals of weight
culatuce funmulas. Tl lasis of oo NS, Balivaloy it isproved] st considesad viewes we funnuley @ vpdiusal v vedes
of convergence in these spaces.

INTRODUCTION

In many research papers examined the properties of optimal approximati
In these papers the problem of optimality with respect to a certain sp;
in the Sobolev space [1]. Consider the cubature formala of the form

1-28), and others.
n are discussexd

N
[posar= ¥ caf (1)
X A=l

(?)

(3)
L plx) is & wei unction, £x, (x) is characteristic function of K, C; and 1'%
are coefficients Bature formula (1) . & (x} is the Dirac delta- function.

Definition 1. The sf (K. ) 1s defined as the space of functions, given on the a- dimensional unit cube K. and
having all the generalize8 tives of order m. square summable in norm [1]:

)
gz{/'g ’;—L:[D“ﬂzd.t} ; (4)
L

L (K

with e Inner product .
U-®)ym, = E_5iD°f-Dedx,

- (2]

where @l =a) +t +... + @, . di =dxjde;. dy,and a! = o' ! --- @, L.

Definition 2. The cubature formula of the form (1) is called asymptotically optimal, if for the norms of error
functional the following equality holds

(5)

Ivsermationa! Ushekose-Malevnu Confervnce on “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT20X0 "
AP Conl. Proc 2365, 0200 14-1-0200 13- 14: Mipedeccey 10. 106350057015
Publisked by AIP Publshing. 978-0-T354-2110-1 53000
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4 (x) and 57 (x) are error functional of optimal and asymptotically optimal cobature formulas of the form (1),
n:-ipu:cuw:ly

Deefinition 3. The cubatare formula of the form (1) is called an optimal oeder of convergence, if for the norm of its
errod functional the following holds

e /i )

(6}

(1), In this paper we consider
K| - v/
in here, are to the arbi-

Here £5" is error functional of optimal order of convergence cubature formu
the problem of the descending order of norm of the error functional ||F".'l(

F,-.-f'{[:l""- (K, )| with an increase in the number of its nodes. The resulis, w
trary distribution of points.

OPTIMAL IN ORDER OF CONVERGENCE OF WEIg ULAS IN
THE SPACE L™ (K

have the following Here

Here we explore weight cabatare formulas, which are optimal for the §
: the following

wie explore weight cubature formulas, which are optimal fogk
Lemma 1. If for error functional (2) of cubaiure forg

(%) = Imy (7}
and
i — CORETaHl§ (k1]
that is
[HPJ-[='=HJJ=.-=N1| (9)
then
£ — CORSIanIs (10}
=] !
or
|:F,-..-IL'3""- u:"]" < c-OKM)- O (K- - Oh™), ()
where

- (Y]
() = plx)epay(x) - ¥ Co8 [ —x™),
L=l
plx) = ]T.ﬂ{m = ]Ttaandm—m izt A, = = [Ta).

We are mnducnng prmfbj.' mathematical induction.

Suppose v = 2, then
A= (X a0 (@ =0yt m=my ey, de=dod, )= oAl

020014-2



plel=pm(n)-polxz) and I (x) = da, () - (22)
If we assume in{4) m = 1, then

/15 0,1 - {![%f[x.]]_d_q}-_[ﬁ]_

Thus, we have

[y (xy,27) (X2 ) = = | < g (02) < By (30), (g 2) =22 2

< ||f3{m_}l,f1.‘;'-""m.l]|| ||{ Ew, (1) fxn,2) >
Taking into account (12), (13) we compute the following norm [ 13]:

I
||--: I (), f(x,z) :‘("‘r";-:-l{u']}|| - {IL% =
2 ey

]
T

o m}
[%f [xy. %2 :I] iy }dﬂ} =

11 . 2 4
}(,‘I.;-I"'m_[]"-{!![%ﬁ;ﬂx]} d;} =

e — cowstants.

fw, () [ (0, |- |7 0) 4 k)

Thaus, from (137 and ( 14) we obtain
[= Enlxg 2. (o) =] =

¢ "-.\',IIJ:]XL';“-!'[ﬂ-III"-”"Jﬁ l:,t,:.ﬁ_,';nl'{n_j}ll-||f{1](-‘£;m|:xﬂ||.
Taking into account (4) from (153} we obtain

ew /25" (g | < € e ) S22 0,1 [l () S5 g0 ) -

020014-3
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Using (8). from (16) we have

<d-¢ -2

N P

that is

< S0 (h") O(K). (17)

"’N/Ll:.!. (Kz)l
where ¢ = ¢~ ¢y -¢3.

Now suppose that (10) is valid for # = k. then from the above calculations we
'( I‘\v‘x).f(x) >l=|< (,\- (xl.xz.....x‘).f(xl .X:.....J‘) >§ =
= |< l”‘ (X‘].C [.yl_l f.!‘_ |).....< [‘\-: ‘X:).( (-Vl [JI’.I(J].JI....X‘) P X >|

< |ew, o) /2 10,1 [l Gra0) /2 (0.1
i ||< Iy, (1) flax...x) >/L:;"‘!. [O,l)” <

< e ) /25 @) [, (20 /8 (18)
From (18), considering (13), we have
ew /15" ()| < e |t () [ Lt )|l (19)
Then, referring to (8). from (19) we obtain
||t~ /L‘;""' (K, (20)
oe, considering (9). from (20) we have
o/ 0] <2
Using the validity asscmoncmmzdwh-:nn k+ L. Thus, whenn = k+ 1, and
taking account g
[< fay (2
|< ty (x).< 1)< ey () f (0 e ) > 2| €
< ||ew, (o) /5™ K (x) /L3 (0.1) -
S v (saer) S (onzempn) 2> /15 00| (21)
Using (4) and (19) from (21) we Wun
”t.v/L';'" (Kesn)|l < [ 0.0)]) -
few m)/L';"" 1) -flen.. (a‘-.)/d_"'"" ©.1)]|- (22)
By using (8), from (22) we have
/1 )| 5 s e
where
dis1 = r]c.'. (23)
=1

0200144



or, taking into account (17), from (23) we obtain
Illh’/l—‘;.:. (Kist )” < M dyiy -O(hr'] ...O(hrf]’) " constants. (24)

in conclusion consider, that

1

Ia)* ; = 5
o /1" (o < NN G
where ¢ = (‘" "ll-l'
or, considering (9), from (25). we have
|§1~/L';"" (K[| <e-0(K7)..00).
With the help of this lemma it is easy to prove the following theorem.
Theorem 1. The weight cubature formula (1) wath the error functional (2) for =N, 11 N; =N and
=1
my +my + ... +m, = m is optimal in order of convergence in the space L , norm of the error
functional (2) of cubature formula (1) the following holds
fo 2" k] =0
Proof. On the hasis of Lemmal under the Ny = Nz = ... = N, have
Thus,
N = (26)
By substituting (26) into (23) we obtain
(27}
From theorem of N
ANO DR THE ERROR FUNCTIONAL OF WEIGHT CUBATURE
Consider the cubature 18
N
[p(x)j(x)d.x:: Y Guf (¢4), (28)
Fa =1
(28) in the Sobolev space L;,"' (K, ). where K, is n-dimensional unit cube.
The generalized function
N ‘
tn(x) = p(x)ex, (x) - ¥ Cad {x—oT). (29)
A=l

is called error functional of the cubature formula (28),

N
< tn,f >= [p(.!)]l.ﬂll.‘— ZL‘AI(JIA')
£ A=l

020014-5



is an error of the cubature formula (28), plx) € L, (K,) is 3 weight function, g, (x) is the characteristic function of
K. C; and x'*) are coefficients and nodes of the cubature formula (28) and & (x) is the Dirac delta function.

Definition 4. The space L:P"" (K, ) is defined as a space of functions, given on a #- dimensional unit cube K, and
having all the generalized derivatives of order m, summable with a degree p in norm [1]:

i

14 ’
(m ! m! AL
/e = {/{ Y =it } d.x} : (30)
Ia (@
where D* = ﬂl—a‘g— la| = _2 a;, al=am!- LY AR
The following is true
Lemma 2. If for the error functional (29) of the cubature formula (28), the fol ions are fulfilled

En(x) = En, () -Eny {x2) - - B, (a)

N a
where Ex (x:) = piixi) &g 1) (x) — *’2 €8 (.u —x,“")‘ plx)= _l'll il

-t o
and

es, /2 0.0 <4, (31)
that s
(32)
then
(33)
-

L (K| < d-0 (67) -0 (12) .- OIE).
4,

the mathematical induction. Suppose n =2 x = (xp.x2), |a| =a + a2, m =
o) plx) = py(xg)-pa(xa) and By (x) = £y, (x1) - £y (x2) -

d=ﬁd,~andm=m,+
=1

Proof. We conduct the
ny +ny, dx ’—‘llllll.lz. f(z) =
If presume in (30) n = 1, then

, g 3
”],/L;.-wml)“_{/[ —,,,-/m ] .u,.} T (34)

So we have

[< fy (xg,x2), flxg0) > = < g (02) < &y, (X)), f(x).%0) 22| <

(Mg}

< [[ews ) /L5 0,1)|- | < o, (xa). £ 332 > [ 0. (35)

020014-6



We compute the following norm:

L ¥
||< v (xy) . f (x).02) >/Lg':|(0,l)|| = {(j: [Iﬁ <y (x1) S {xy,23) >I-] dx;} =

I ¢ #
= {{ [|< l_v,(n].ﬁﬂn.n)l ] dx;} <
{ [(“‘“-“"/L L‘y"'(o.n")!] sdxz}’ -
”zx.(n)/L"‘"’ (0, 1)“ {j{ [(-.T.-j(:. * ))21541,},;,2}:

=d “[v,{x,)/L“" ©.1)f- ]lfm/l.""

where d’ -constants.
Thus, from (35) and (36) we obtain
<iv(xxe). fla,x) > <

<d “"": (x;p/L',,"" (0.1 |}| ; "l,v, (x

From (37). using the definition of norm. we have

[ew /L (=) < ds0 (R 0 (15).
where
3= l!dl 'dz

Now suppose that the inequalit for n = k, then on the basis of the above calculations we obtain
l<in(x). flx) 2l=l< vt ¥ x). f(x,x....5) 2=
= I( Op (X)) <y, () < Exp{a) < By, () - f (g0 ) 232 L }}i =

SI“";:}/L;N"‘O-')|§' (n\'A.n[-'1-1)/1-(;“"”'(0.l]‘%-...
||< Ey, (xy) . f (2,00, e xg) >/Li,"’"(o,|)” <

< o [ 00 o o o [

where d" - constants.
From (40), using the definittion for norm of the error functional, we obtain

”l’.\-/L':'" uq)” zd" ”t,,, (= )/L‘,""" (0. n“ "rM (‘.)/L:."‘"' (0.1 )" :

020014-7
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Then, using (31), the inequality {4 1) reduces 1o

e

)
where d = [ d;
e

o
|on 13 ()| < -0 0 (7)o (8.

Using the validity of lemma (2) at n = &, we prove that the assertion holds for b =
n=k+ | we estimate error of cubature formulas for the form (28§
|‘=C LAV T8 ST T Y T R TR }| =

= ||fm|:1|:|-‘-'3 () e B (g )= By (g ) Sy Ry ) =

< || ) f2 (0.0 e o) S 0, |-

1. Taking imto acooundt (40, at

| LTS (CR " Y (42}
Hence, as abowve, nsing the definition of norms of functionals, we get
flow /i (a2} f
- ||t‘.u. (x) /" L™ (o, {43)
From inequalities (31 and (43) we obtain
. ol ()
2 Ml
or
sy g - OB L (R
where dl.—l = |
Summarizing the res d. in conclude by noting thar
| ® = i
ew /i || < o (45)
{43) or, taking im0 account (32), {44) we have
[l /e k)| < - 0.57) 0 (1) . d— canstans.
Lerma 2 is proved.
With the help of this lemma it is easy 1o prove the following theonem.
Theorem 2. The weight cubature formula (28) with the error funciional {29) at N = Nz = .= N, IEIIH. = N and

lam)|

#ity + iz + ..+ #iy = 8 is optimal in order of comvergence in the space Ly (K., for the norms of error functicnal

{2%) of the cobatre formula (28) have the equality

| /L k)

=ﬂ[N‘?:].

020014-8



Proof. On the basis of Lemma 2 at N, = N> = ... =N, we have N; = ¢N, i = 1.2, .__.n. Thus,

*n

ﬁlwuerltn-:» Ay _ 8 (46)
By substituting (46) into inequality (45), we obtain
||1 /L"'"(K..)” <c-N-% (47)

From the N_S. Bakhvalov theorem [24) and the inequality (47) follows the proof of the theorem.

WEIGHT CUBATURE FORMULAS IN THE §

Multidimensional cubature formulas differ from the one-dimensional with two fi
1) infinitely varied forms of multidimensional areas of integration;

2) rapidly grows number of integration nodes with increasing space dimension.
Problem 2) requires special attention to the construction of the most efficig

Here, we discuss the formula with taking into account this requirey : : las are called
by N.S. Bakhvalov as "practical formulas” [24].
We regard the weight cubature formula

(48}

(49)

Cal i) )-d.x} ) (50

my ax.,um axnn.

~
I
-
a

where my + 2 + ...+ my = m,
with the scalar product

| {0 (9" )
U"’"i:‘lx.l‘/( o )( FR )
L

where dx™ = dx]"dx52.. .0, m=my+my+..n,. dx=dxdy..dx,.

As it is known [1]. the norm of a function in the space L,™ (K, ) determined by the formula

lr /25 ()| = {f ;B ';'—;m"n-rn’dx}.- (s1)
K, |@/==

020014-9



where @l =1+ +..t, @!'=m!-a@!-..o!and D% f(x)= #—-’-’-‘J,—'&’-

dxl'ax: e

Suppose that in (51) n = 2 and m = 2_ then we obtain the following

JEEGR) o 5 da(hE) «-

@]~ Wy ly=2

afm 2 (PN | (P i
/[ o l!-l!(c?xld‘lz) +( o ) : (%2)
When n = 2 and m = 2 equality {50) 1akes the following form:
L 1@ enlP - (8@ Y
hl/l-: lKZ)! _K{(Q—XTTJ;:) dx. (53)

Obviously, in the right hand side of (53) is less computing, than in (52 of the function
in space L|:2| (K3 ) the number of computing operations will be much Ig '
involved only the mixed derivatives. Now we prove the the followi
this work.

ne of the main results of

Theorem 3. If, for the error functional (49) of the welg
following conditions e fulfilled

e space barL™ (K,) the

and
(54)
that is
d; constams, ({ =1 7) hj - ‘-'.!'- (5%)
then
| l-)‘ l
”’.V/L: (K..)” <d- = d — constants, (36)
A"
il
or
Jev /25" ()| 2 0 (85) 0(422) ... O0). (57)
where

N, e -
fx, (x5) = pi () 8o () — 1 Cod (xe—x"). pla = it
=1

=l

d = 1 d;, m=my +my+...+m, and m- is arbitrary (t=Ton).andm; > L.
=1
Proof. We are conducting proof by mathematical induction.
Suppose n = 2. then
x=(x1,.x2). |a| = a1 + a2, m = my +mnz, dx = dxydxz, f(x) = f(x1.x2),

020014-10



plx)=py(xg)-palxz) and £y (x) =y, (x;) -y (x2).
If presume in (50) n = 1, then
1
l -

/2 0.0 = {‘/(')';".(.1"))“1:.-}‘.(:&17).

o

Thus. we have

[< fy(xxa), flxpe) > =< by, (). <y (x). f(x.0) >3] <

v, (u)/Lg““"' ©.0)- < tx (). £ 21.32) >/L‘;“-" )”

We compute the following norm:

ﬁ < fny (21 ). f Cxgx2) Y
0 E

1
”< g (x), f(xxa) >/L§""(0.l)” = {/ .

1
o™
= {/ < fw, (u).x,-zf(n.xz)
A 2

4

if,.',(x. )/li.m..- .»(o_n;l] dx,} =

{1

) }
{%1(11.11]] dx, }dx:} =
1 2

|<¥n(xp2), flx.x) > < ”[.\': (,(:]/L'z’":" (0.1)“.

[l () /25 0.1 - £ ) /28 k|
Considering (50) from (60) we obtain
e/ e

Taking into account (54) from (61) we have

<

tw, (1) /15 (0,1)] - e (e2) /5 0.1)| -

||c,,/z_l2-','(x,-)” w.-d:-N,l..,fN,l..:.

020014-11
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[lw /1 )| < 5 0 (87) -0 (47). (62)

where dy = d| .
When n = & we obtain

[< Ex e} flx) =] = [< fw .22, ) f (052, ) = =

| f ) o By (Xt ) o < By (2], < gy () S (g ey - -

< Jon /15 @0

et F ) = ™ 0 <

< [ e o) 2 @) ) (63)
From (63), taking into account (50) we have

b JE ()| < e, () /I (64)

e/ )| < [ o) /

Then in view of (54) from (G4) we obtain
(65}

or, taking inio account (38

Thus, suppose . U into account {507, from (G4) we have

< B (202, e X )L (0, X0, K ) 2] =

= |« v, (I (2], <. < g (4] v, () o f (102 b ) >3] S

< || (o) f2E " 0,1) | -

o, () 5" (0.1)

| e ey s iy s frEe o (66)
Usimg (50) and {64 from (66) we obtain
e /L ()| < [ ) /" 0.1

lew, e L (0,0 [l Greea) S L™ (0,13 (6T}
e e/ I / ||
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By using (54) from (67) we have
1

1 )] < e =
ew /L7 (K| € dusr o (68)
or, considering (62) and (68) we obtain
mie -~ " kel
|§r,./L': (x‘,..)”5.1“.-0(;.,')...0(:.;':,' .+ where dyq = T d.
Thus obtained inequalities (56) and (57):
||¢,./L',"'"(lc.)j <d : , d—ec (69)
or. considering (55) from (69) we obtain
[lex /1" (R < 2-08™)..0). b= (70)
where d = ﬁldg.
If, in (69) or (T0) suppose N =Ny -Na- . -Ne. N1 =N = . =N, an then we have
or
(71)
which was needed of proof. Theorem i
Thus, we obtain an of the error functional (49) for cubature formula (48) in the space
L™ (K,).
A similar assesg of the emror functional of cubature formula (48) on the

quotient sp J ' ve have received the same order of convergence 10 zero as

Ak
'-:) - (72)

Obviously. that the derivatives

*-17(x, 4,) Il .9.) R . Ay 25) .
r and 7= are continuous on K5, but -;f—- has a feature on K;. Therefore, from the condition

m=my+mzitisclearthatm; =m—landm: =l inthatm— 1+ 1 =m
Hence it follows that f (x,.x2) € L3™ (K2) when iy = mi— 1, ma = | and f(x1.%2) ELY™ (Ka).

CONCLUSION

In this paper we investigate weight cubature formula in function spaces of S.L. Soboley L3 La~ , Ly for the func-

dons defined in the n - dinrensiomal unit cube K and obin an upper estinaue for the ponm of aaror functivesls of
weight cubature formulas. The bazia of theorem N.S. Bahvalov it isproved that consideredvicwad cubature formulas
are optimal on order of convergence in these spaces.
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