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1

WEIGHTED OPTIMAL ORDER OF CONVERGENCE OF
THE HERMITIAN TYPE CUBATURE FORMULAS IN
SOBOLEV SPACE

!Shadimetov Kh.M., ** Jalolov O.I.
*o_jalolov@mail.ru
nstitute of mathematics named after V.I.Romanovskiy, UzAS,
4b, University str., Tashkent 100174, Uzbekistan; 2Bukhara State University,
Muhammad Ikbol 11, Bukhara, Uzbekistan, 200114

In the study of various questions arising in the theory of approximate integration and
partial differential equations and related departments of analysis, the so-called Functional
approach turned out to very fruitful. Until now, cubature formulas have been considered,
with the help of which a definite integral of a function is approximately calculated when
the values of this function are known at individual points-nodes of the cubature formula.
Bat more general cubature formulas are possible, which include both the values of the
function and the values of its derivatives of one order or another. If we know not only
the values of the function f (z) at some points of the region 2 but also the values of its
derivatives of one order or another, then it is natural that with the correct use of all these
data we can expect a more accurate result than in the case of using only the values of
the function. In this paper we investigatea weighted cubature formula of the Hermitian
type in function spaces Lgm), LI()m), I_/gm) of S.L. Sobolev for the functions defined in the
n - dimensional unit cube and obtain an upper estimate for the norm of error functionals
of weighted cubature formulas. The basis of the Bakhvalov theorem it is proved that
considered cubature formulas of the Hermitian type are optimal on order of convergence

in these spaces. It turns out that space I_/Z(;m) has some advantages. Indeed, the advantage

is that, first, for the norm of the error functional of cubature formulas in space I_/z(;m) ,

the computational operations are much less than in Lz(,m) , and secondly, the norms of

)

the error functional of cubature formulas given in spaces EI(,m) and L:E,m have the same

order of convergence to zero at N — oc.

Keywords: weighted cubature formula, error functional, Sobolev space, function spaces,
generalized function.

Citation: Shadimetov Kh.M., Jalolov O.I.2021. Weighted Optimal Order of Conver-
gence of the Hermitian type Cubature Formulas in Sobolev Space . Problems of Compu-
tational and Applied Mathematics. 1(31): 91-107.

Introduction

In many research papers examined the properties of optimal approximations of linear
functional(see, for instance, [1-21]. In these papers the problem of optimality with respect
to a certain space is investigated. Most of them are discussed in the Sobolev space [1].
Consider the cubature formula of the form

/ p) @)z~ 3 3 (~)leley @) ) (50

K" |(¥|<t A=1

in the space Lgm) (K,), where K, is a n- dimensional unit cube,

K, ={(z1,29..20,) [0 <21 <1,0< 25 < 1,...,0< x, < 1},

(1)
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|O£| =Q1F+ Q2+ ...+ ay, (Oé) = (011,042, '-'7an)7
W = (2,M) 2,2 g, ) and fp Ydr <00, 0 <t <m, m=my+mg+-+my,.

A generalized function

W (@) =p (@) ek, (@ }j}jow&w ) (2)

la|<t A=1

is called a error functional of the cubature formula (1),

O - / DY Z 1)lelg@) plo (), (3)

ra o<t A=1

is an error of the cubature formula (1), p (z) is a weight function, e, () is characteristic
function of K, Cia) and ™ are coefficients and nodes of the cubature formula (1) , ¢ (z)
is the Dirac delta- function.

Definition 1. The space Lgm) (K,) is defined as the space of functions, given on the
n- dimensional unit cube K,, and having all the generalized derivatives of order m, square
summable in norm [1]:

[N

| /s e, / "D f 4
|or|=m
with the inner product (f, ¢ )L(m>(K )= ml “DYf - D%pdx,
Kn |a|
where |a| = ag + as + ... + @, dv = dxidzs...dx, and o! = ajlag! - - - ),

Daf _ olel

0z ox ..oz
Definition 2. The cubature formula of the form (1) is called asymptotically optimal,
if for the norms of error functionals the following holds

e e |
w| ?

lim
N—oo H£(0t)0 L(m

Here, 65\?)0 (z) and 65\?)“’0 (x) are error functionals of optimal and asymptotically opti-
mal cubature formulas of the form (1), respectively.

Definition 3. The cubature formula of the form (1) is called an optimal order of
convergence, if for the norm of its error functional following holds

s | 6
2 T ] < o

Here 653)"*” (x) is error functional of optimal order of convergence cubature formulas (1).

In this paper we consider the problem of the order of convergence of norms
HEE\?)/L({")* (K,) |, Hég\‘;)/L;m)* (K,) H and HES\(;)/E(ZT")* (K,) H of the error functional with
an increase in the number of its nodes. The results, which we obtain here, are to the
arbitrary distribution of points.
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2 Optimal in order of convergence of weight cubature formulas in
(m)
the space L, ' (K,)
Here we explore weighted cubature formulas, which are optimal for the convergence
order.

We have the following:
Lemma 1. If the error functional (2) of cubature formula (1) satisfies the conditions

6 () = 00 (@) - 0 (w2) - £ () (7)
and
lgﬁi)/Lémi)* (0,1) H < Ci%a (i=1,n), ¢ are constants, (8)
that is Z
|2 0.1) | < comr), (=Tm), b= (9
then
]e§$>/L;"‘>* (K,) ] S —, (10)
AL A
is ¢ constant, or
M?>/L§m>* (K.) ’ <c-ORM)-O(hy2) - .- O (hm) (11)
where N
gg\%i) () = p () g9y () — %Zg:tz AZZ; Cﬁ?i)é(az‘) (l‘z — x?a)) p(x) = Z]illpz(zlrz), c= lell Ci

andm=mq+mg+..+m,, m;=>1, i=0,L.

We are conducting proof by mathematical induction.

Suppose n = 2 | then z = (z1,22), |o] = aq + az, m = my + my , dz = dxidx,,
f (@) = f (@22, p(x) = py (21) - pa () and 67 () = €57 (1) - €57 ().

If we assume in (4) n = 1, then

1 2 2

[z o] =4 [ i) w @) (12

d.fimi
0

Thus, we have

‘< 0 (21, 22) , f (1, 2) >‘ _ ‘< 09 (2y), < 659 (2) | f (21, 22) >>‘ <

<|

6215 0.1 || | < 6 @) f (1o >/28™ 0,1) | (13)

Taking into account (12), (13) we compute the following norm [12]:
< 66 @) £ (@) /257 0.1) | =

1
2 2

d.’L’Q =

m
dz)

1
.
/’ 2 < 65\711) (1'1) 7f<'1:17x2) >
0
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NI

1 2
/‘ (al) def(331,$2)> dry p <
diy
0
1 2\
a1 m1)* dm? mi
<3 [l o o) H-H S /15 0.1 H] dn b —
0 2 )
1 1 2 )2
8m1+m2
4(01) L(Tm) 0,1 H / /|:— 7 :| d d _
= || @o/esm o, G (e1m2)| o b
0 0
/
2 3
(a1) (ma)* g _
N, (1)) Ly //{é&’f”@x a:)] de p =
= |l 28 ) ||| ()28 (1) || (14)

d is a constant, m = my + ma, Ko = {(x1,22) |0 < 21 < 1,0 < 29 < 1}. Thus, from (13)
and (14) we obtain

’< /5\?) (x17x2)7f(x17x2) >‘ g

650 0/ L5 0,1) || - | r @/ ) | 5)

Taking into account (4) from (15) we obtain

e e 0.1 -

|6 @y ) || < |62 8 o) |- e @o/ee o, || o)
Using (8), from (16) we have
el m)* 1
] P
That is .
|60/ (1) | < oy 0 (ny) (17)

where c;) =c-c 0y
Now suppose that (10) is valid for n = k, then from the above calculations we obtain
[22]:

< ) @)1 (2) ] = [ < 65 (00,2 m0) S (@102, ) | =

‘<£% (1), < 605 (24 1) oy < 682 (25), < £0) (:Cl),f(xl,xg,..,xk)>...>‘ <

<|

640 @)/ 28" 0,1 ||

02 (o) /L5 (0,1) |
. H< (9 (2y)  f (21, 2, i) >/L5™ (0, 1) H <

) (@) /L5 (0,1 |||

<|

60 @)/ L5 (@) || -

F@/s ) | as)
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From (18), considering (13), we have

Then, referring to (8), from (19) we obtain

€§3)/L§m)* (Kk) H <

60 (@)/L5 0,1 || || @i/ o | )

1
N7 NP2 N

Hﬂg\?)/Lgm)* (K}) H <A e (20)

or, considering (9), from (20) we have

G2 (1) || < ¢ di- O (k) O (),

k
where dj, = [] ¢;.
i=1
Using the validity of assertion n = k, we prove that the assertion is valid when n =
=k + 1. Thus, when n = k 4 1, and taking account of (4) and (19), we obtain

’< Eg\?::ll) (x17‘r27 ...,l'k+1) 7f (l'l,l'g, -~-7xk+1) >’ =
<00V (1), < 002 (9) , < ooy < LGV (), < L5 (@pn) o f (21, @0, oy ) > o >| <

Ng+1

<|

650 @)/L5 (0,1) | - |

a5 @)/ 1) |-

H< O (@), f (01,22, oo pgn) > /L8 (0,1) H

Ni41

< v @) £ @) /2 0,1) | (21)

Using (4) and (19) from (21) we obtain

Hg(akﬂ)/l’gmkﬂ)* (Kk:-i-l) H s Cl”

650 @)/ L5 (0,1) || -

Niya
glex) LU (0,1) || - || elex+0) L) (0,1 22
N (o) /L2 (0, 1) Nerr (Zh41)/ Ly (0,1) (22)
By using (8), from (22) we have
1
(@) /7 (m)x
i | <t @
k+1
where dy1 = [] ¢
=1
or, taking into account (17), from (23) we obtain
|65 /8 (i) || < @+ diis - O (1) .0 (B2 (24)
c//, constants, in conclusion consider, that
. 1
(@) /1 (m)
VN /L2 (K ‘ S CONT N N (25)
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where ¢ = ¢ - dj1, or considering (9), from (25), we have

With the help of this lemma it is easy to prove the following theorem.
Theorem 1. The weight cubature formula (1) with the error functional (2) for N; =

0L (K,)

| <c om0 mm

=Ny =..=N,, H N; = N and m{+mso—+...4+m,, = m is optimal in order of convergence
i=1

in the space Lgm) (K,,), those, for the norm of the error functional (2) of cubature formula
(1) the following holds

|6 /28" () | = 0 (v%)
Proof. On the basis of Lemmal under the assumption N; = Ny = ... = N,, we have
N, = V/N.
Thus,
ﬁ Nlmz — Niﬂ‘b1+mz+...+mn — N% (26)
i=1
By substituting (26) into (25) we obtain
| e ) | <o (27)

From theorem of N.S. Bakhvalov [23] and from the inequality (27) follows the proof.
Theorem 1 is proved.

3 A norm estimation for the error functional of weighted cubature
formulas on the space L\ (K,,).
Consider the cubature formula of the form

/ v)dr ~ Y Z DMy @ pe () (28)

I(n |C¥|<t A=1

in the Sobolev space L(m) (K,), where K, is n-dimensional unit cube.
K, ={(x1,09..0,) |0 <21 <1,0< 22 < 1,...,0< 2, < 1}

la| = a1 + az +. + Oénv (@) = (a1, ay, ..., Oén), W = (3[:1()‘1),3:2(’\2),...,azn()‘")) and
fp Ydz < 00, 0 <t <m, m=my+my+ -+ My,

The generalized function

0 (2) = p(z) e () Z Z C(a)5(a) W) (29)

lo| <t A=1

is called error functional of the cubature formula (28),

< gg?),f >= / d;p — Z Z |O‘|C(a)f(a ( )

Kn |Oé|<t A=1
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is an error of the cubature formula (28), p(x) € L, (K,) is a weight function, ek, (z) is
the characteristic function of K, Cia) and ™ are coefficients and nodes of the cubature
formula (28) and 0 (z) is the Dirac delta function.

Definition 4. The space Lém) (K,) is defined as a space of functions, given on a n-
dimensional unit cube K,, and having all the generalized derivatives of order m, summable
with a degree p in norm [1]:

| % %
Iz e || =4 [ 30 s e )
K, laj=m
where D = aalaaa%, ol = > aj, al = agl-a! - ... - a,l. The following is true.
z] 0wy 2 ... 0z .

7=1
Lemma 2. If for the error functional (29) of the cubature formula (28), the following
conditions are fulfiled

O () =TT 65 ()
i=1

N; ] v
where (5 (1) = pi (a1) oy (r) = 35 60 (i = ai™), pl) = [T ()
i=1 =

and .
(O( ) my )*
‘ENII /L™ (0,1) H < dzﬁ (31)
d; are constants.
That is
[ zgmo 0,1) | < ds0 () (32)
d; are constants, (i =1,n), h; = N%
then
e g (| < - ! (33)
N p n ~ n
IT N™
i=1
d is a constant, or
| /2im (1) | < a-0 iy -0 g -0 i)
d=[]diand m =my+ma+ ...+ m,
i=1
Proof. We conduct the method of the mathematical induction.
Suppose n = 2 x = (z1,22), |a| = a1 + @z, m = my + my, dr = dridxs, f(x) =

= f(x1,22), p(x) = p1 (21) - p2 (x2) and Eg\?) (x) = 65311) (x1) -Eg\(,)f) (x9). If presume in (30)
n =1, then

1

I £i/ L") (0,1) || = /[(%f@i))zl de; v , i=1,2,..,n. (34)

i
0

S =

2
2

So we have

‘< 55\7) (z1,29) , f (1, 72) >‘ = ‘< fﬁﬁf) (71),< 45@2) (w2), f (21, 22) >>| <
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We compute the following norm:

< |l e 1) || < 46 @) @asw) >/Li 0,1) | (35)

H< Eg\cf?) (z1), f (21, m2) >/L{") (0, 1) H -
p % 1 p %

ma
dry » = / < 65311) (1), f (z1,22) >’ dxs <
0
Y

dxy™

fon) "

2@/ 00 ||| s ez 00 || dn -
2

/‘j;: <€ ( 1), f (@1, 22) >
0
0/[

o ) am1+m2
650 /L™ 0,1) |- / / [Wﬂm,xz) dry pdry =
1 ‘2 J

™=

S =

11 8m+m P
( ( )/Lml) 0,1) // pETrEE f(x)| dvy =
1 |

00

09 () /L™ (0, ||f (x)/L0 (K,) || (36)

:Cl

where is a constant.
Thus, from (35) and (36) we obtain

’< EE\?) (21, 22) , f (21, 22) >‘ <

/
<c

00 (@) /2™ 0,1 || @)/ 27 () || (37)

From (37), using the definition of norm, we have

Taking into account (31), on the basis of (38) we obtain

6 (2)/ L5 (1) || < ¢

61 00

o @/rm o | @)

1
mi \TIM2
Nl N2

65\?)/[/;7”)* (KQ) H < C/ *C1 " Co

That is

6L (1) || < es0 () O () (39)

where ¢c5 = - ¢; - ¢s.
Now suppose that the inequality (33) holds for n = k, then on the basis of the above
calculations we obtain

‘< Eg\?) (), f(x) >’ = ‘< 65\?) (x1, T, ..o, xk) , f (21, T2, vy ) >‘ =

- ‘< O (r) s < O0E Y (@h1) s ooy < 052 (22) , < 000 (1), f (210, 22,y 0y 1) > o >‘ <
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Hé(ak L(mk) (0’ 1) H . ‘

£ ()L (0,1 |
. ”< g]\?ll (:Ll) 7f (ZE17:E27 7:Lk) >/L](9m1)* (07 1) H <

f@)/sm ) ||, o)

<|

where ¢’ is a constant.
From (40), using the definition for norm of the error functional, we obtain

65 (@) /25 (0,1) |||

0 )/ L () || -

|60 () || < |60 o /ndm” 1) | 650 @oreim e |-
Then, using (31), the inequality (41) reduces to
1

Hgg\?)/Lém)* (Kk) H < e N .N2m2 R
1 N,

or

"

B0 JL () | <6 c- O ) - O (=) -+ O (i)

where ¢ = HCZ and m = my + mo + ... + my,.

Using the vahdlty of Lemma 2 at n = k.., we prove that the assertion holds for n =
= k + 1. Taking into account (40), at n = k —i— 1 we estimate error of cubature formulas
for the form (28)

‘< E]\(;é::ll) ($17$27 "'7$k+1) 7f ($17$27 "'7:Ek+1) >‘ ==

<000 (1) < 052 (w2) < oo < U9 (), < L5 (win) o f (01, T2y o 1) > o >| <

< [l /e 1) | e @/ 1) |-
H< ) () s f (21,2, o 1) >/ L0 (0,1) H (42)

Hence, as above, using the definition of norms of functionals, we get

H£ ak+1)/L1()mk+1)* (Kk+1) H < C///

Ni41

650 @) /g™ (0,1)

Ngi1

From inequalities (31) and (43) we obtain

O ) /L5 (0,1) |- [|< 665 (onan)  f (mcomgn) >/L0(0,1) | (43)

1

mi mo M1
Nl 'N2 ...Nk_,’_l

gg\?::ll)N/L;mkH)* (Kk+1) H <" Chk+1 -

(44)

or

kt1
where ¢, = H C;i.

(9115 (i) || < 7 cun - O () .0 ().
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Summarizing the results obtained, in conclude by noting that

1
N Ny'2. N

e | <

or, taking into account (32), from (44) we have
8 LM (K H <c-O(h™)..0(h™), cis a constant.
Lemma 2 is proved.

With the help of this lemma it is easy to prove the following theorem.
Theorem 2. The Weighted cubature formula (28) with the error functional (29) at

Ni = Ny = ... = N,, H N; = N and is optimal in order of convergence in the space
i=1

LY (K,), for the norms of error functionals (29) of the cubature formula (28) we have
the equality

HEE@“)/L;m)* (K,) H —O(N7%).

Proof. On the basis of Lemma 2 at N; = Ny = ... = N, we have N; = (/N, where
1=1,2,...,n
Thus,
ﬁ szz — Nim1+m2+...+mn — N%. (46)

i=1

By substituting (46) into inequality (45), we obtain

From the theorem of N.S. Bakhvalov [23] and the inequality (47) it follows the proof of
the theorem. Theorem 2 is proved.

6/ Lm (K,) H <e N% (47)

4 Weight cubature formulas in the space Zé’”) (Ky)

Multidimensional cubature formulas differ from the quadrature formulas with two
features

1. infinitely varied forms of multidimensional areas of integration;
2. rapidly grows number of integration nodes with increasing space dimension.

Problem 2) requires special attention to the construction of the most efficient formulas.
Here, we discussthe formula with taking into account this requirement. It is known, that
such formulas are called as "practical formulas"by N.S. Bakhvalov [23].

/ v)dr ~ Y Z Doy @ p@ () (48)

Kn |a|<t A=1

in space L™ (K,,), where K,, - n - dimensional unit cube and p(x) € Ly (K,) is weight
function, K, = {(z1, z2...x,) |() <711 <1,0< 2, <1, .., <lblal=a1+ag+ ...+
+ay, o = a1 +ay+ ...+ ap, (@) = (al,az,...,an),x( ) = ( o V20, 0)) and
fp Ydr < 00, 0 <t <m, m=my +my+ -+ m,.

In the cubature formula (48) comparable to generalized function

(9 (2) =pla)eg, (@) = Y zN: CL5@ (- 2W) (49)

la|<t A=1
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and we call it a error functional.
Definition 5. The space Lgm) (K,,) is defined as the space of functions, given on the
K,, and the norm of a function, which is determined by the following equation

IO
{K/ 811317”181'27"2 8$nm"> dlE (50)

where m; +mo + ... +m, =m, m; >0,1=1,n
with the scalar product

o - (42 (Z)

n

| 77287 (5,

where 02 = 0x" 0zy"?...0x", m = my + my + ..My, de = dr1dxs...dx),.
As it is known [1], the norm of a function in the space Lgm) (K,) determined by the

formula
{K/ DS (@) ey (51)
e I—m

alol f(zq,...,
where |a] = a3 + ag + ...ap, ol = aq! - ag! - L, and D f (x )_ngf‘lszf‘L'

Suppose that in (51) n = 2 and m = 2, then we obtain the following

J oG e [ 2 (aar)

|a|=m a1tao=2

1 ) - () e

2

=

i e

When n = 2 and m = 2 equality (50) takes the following form:

o ol = [ (e o &

Obviously, in the right hand side of (53) is less computing, than in (52), and it follows
that the norm of the function in space Egz) (K3) the number of computing operations

will be much less, than in space L;Q) (K3), as in the norm (53), involved only the mixed
derivatives.
Now we prove the the following theorem, which is one of the main results of this work.
Theorem 3. If, for the error functional (49) of the weight cubature formula (48) in
the space Eg’") (K,,) the following conditions are fulfilled

O (@) = 6500 (1) - 65 (2) - oo - £547) ()

and

1
T 54

1

1 0 <
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c; are constants, that is

e /26 0.1 | < co ),

¢; are constants, (i =0,1), h; = &

ﬁi 3
then ,
[Rear ) pr—
I N;™
i=1
c is a constant, or
|/ () || < e o) - O (b - O (i)
where
09D () — o Vs SR ) (g O _
N, (@) —p(:c,)a[o’l](xl) ZMZ_I Ai v —z;7" ), plr) =

=,

=

1

(55)

(56)

(57)

— 1 d;, m = my +ma + ... + m, and m; is arbitrary (i =1,n), and m; > 1. m =my +
i—1

+ms + ... +m, and m; is arbitrary (z =1,n), and m; > 1

Proof. We are conducting proof by mathematical induction. Suppose n = 2, then

r = (21,22), |a] = a; + ag, m = my + my, do = dridry, f(x) = f(21,22), p(x) =

= p1 (1) - pa (22) and 63 () = 0§ (a1) - €552 (x2).
If presume in (50) n = 1, then

1 . 33
[z o] = [ (55 a b o (=T,
0

Thus, we have

< ‘ (9 /L5 (0,1) H . H< flas

We compute the following norm:

|< 66 @), (@i ) =118 (0,1)

1
2 \ 2

1

dm2 o
/‘dxg” < éﬁvl> (1), f (x1,9) >‘ s
0

Ve

(o) dme
= /<ﬁN11 (xl),Wf($1,$2)> dxs <
La
0
1 2
(1) = (m1)* am? = (m1)*
< S @orzs oo || s ) /28 0,1) | | das =
2
0

D (21), f (21,22) >/L™ (0, 1) H '

< 65 (2 f (@1, m2) >| = < 652 (@2) < 652 (@) f (1, 22) >>| <

1
2

(58)
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(1 2 3
(1) = (m1)* 8m1+m2
= ‘ENl (z1)/ Ly (0,1) H Ox’f“ﬁ ma f(z1,22)| dxy pdxs =
o (o
2 3
am1+m2
— leter (@) /6m" ( / / P
‘ M @)/ OxT 922 Jx)| do
= [ @2 1 || £ @28 sy | (59)
where © = (x1, 25) and m = my + mo.
Thus, from (58) and (59) we obtain
‘< 65?) (w1, 22), f (21, 72) >‘ <
< [/ 0,1 || - e @0/ 2 ) ||| @/EE ) || (60)
Considering (50) from (60) we obtain
|66 @)z ) || < |2 /28" 1y || e @o/ZEm .0 || )
Taking into account (54) from (61) we have
’ g(a)/f/(m)* (K,) H <ep-ey- _
N 2 N{m ,szz’
or
|25 () || < oty -0 ), (62)
where c;, =1 - Co.
When n = k we obtain
‘< 65\?) (), f (2) >’ = ‘< 65\?) (X1, Toy ooy Tk) 5 f (X1, T2y oovy Tk) >‘ =
- ]< 09 (), < L0 (24 ) oy < 682 (25, < 080 (21), f (0, 29y 28) > . >‘ <
< [ o/ 28 0,1y || - e (nmn)/ 28 0,1y
< e @ £ ) =28 0,1 | <
<[5 w/Zsm” 1) || 6 @0/ 28 @ || - [ @ 2 (s || (63)
From (63), taking into account (50) we have
E((X) I_/(m)* K < f(al) I_/(ml)* 0.1 g(f’lk) I_/(mk)* 0.1 64
N /Ly (k)\Nl(xl)/Q 0, 1) || - Nk(l‘k)/z 0,1) ] - (64)
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Then in view of (54) from (64) we obtain

k
where ¢ = ] ¢; or taking into account (55), from (65) we will have
i=1
O (k") ...O (R]'™).
Using validity of the assertion of theorem 1 for n = k, we prove that the assertion is
performed when n =k + 1.

Thus, suppose n = k + 1, then taking into account (50), from (64) we have

1
N N2 N

(65)

0075 (K | < e

A0 EE (k) | <

‘< o) (@1, @,y Thn) f (01, T2, 00y T >‘ B

k+1
< égf;ll) (1'1) , < 65\6;22) (.]72) , << Eg\(;:) (l’k) < fgv:_:—ll) (xk—i-l) ,f (1'1,1'2, . xk-{-l) > ... > <
< [ @2 1) ||| /28 0.1) |-
' H< gg\?::f) (:Ek—I—l) ’ f (mla L2y eeny :L'k—l—l) >/[_/gmk+1) (0) ]-) H . (66)
Using (50) and (64) from (66) we obtain
plok+1) L(mk+1)* K < |[pten) E(ml)* 0.1
N /L2 (i) || < ||0n, " (20)/ L7 (0, 1) |-
e @z .y || e @) /28 0,1) | (67)
By using (54) from (67) we have
- 1
00 1I8 (K || < - 68
|69 725 (i) || < v o (68)
or, considering (62) and (68) we obtain
|69 /28 (K || < ar -0 ) 0 (57
k+1
where ¢ = H .
Thus obta,med inequalities (56) and (57):
(@) ) F (M) (fr H < 1
‘ O /L () || < oxmm NP N (69)
c—constants, or, considering (55) from (69) we obtain
o 1T
|60 /28 () | < e o™y o), b= (i=Tm), (70)

where ¢ = H G-

If, in (69) or (70) suppose N = Ny Ny-...- N,, Ny = Ny = ... = N,, and my + mgo +
+ ... +m, = m then we have

O LS (K,)

‘éc-N_%
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or
|60z () || < e-om), ()

c is a constant, (h = N _%) which was needed of proof. Theorem 3 is proved.

Thus, we obtain an upper estimate for the norm of the error functional (49) for cuba-
ture formula (48) in the space L™ (K,).

A similar assessment was obtained previously for the norm of the error functional of
cubature formula (48) on the quotient space of S.L. Sobolev L™ (K,,) and as a result we
have received the same order of convergence to zero at N — oo, although the norm of
function was defined in different ways, this is confirmed by the inequality is (27), (71).

For illustration, we present an example at n = 2.

Suppose

1

3/2
[z, mg) = ™ (5 — bx%) (72)

Where a > o0 and b > 0.

Obviously, that the derivatives IS (AR RPN, WA COE 2 )]

BT ow, . are continuous on K, but

1
62%;2’“) = 3a™ 2p%e 1 (1 /, — ba3)" 2 has a feature on K. Therefore, from the condition

m = mq + my it is clear thai: my =m — 1 and my = 1, in that m — 1 + 1 = m. Hence
it follows that f(zq1,29) € Lgm) (K3) when miy = m — 1, my = 1 and if my > 2 then
f ($1, $2) éLgm) (KQ)

5 Conclusion

In this pa%jer we investigate weighted cubature formula of the Hermitian type in func-
tion spaces L™, LY™  LS™ of S.L. Sobolev for the functions defined in the n - dimensional
unit cube and obtain an upper estimate for the norm of error functionals of weighted cu-
bature formulas. The basis of Bahvalov N.S theorem it is proved that considered cubature
formulas of the type Hermit are optimal on order of convergence in these spaces. At the
end, it is argued that the weighted cubature formulas in spaces have the same order of
convergence, although for the norm of the error functional of these cubature formulas in
the space only mixed generalized derivatives are involved and these formulas can be called
practical.
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[Ipu m3yvueHun pasjMIHBIX BOIPOCOB, BOZHUKAIOIMINX B TEOPHUM HMPHUOJIUKEHHOIO HH-
TerpupoBanus U JudHEePEeHInaIbHbIX YPABHEHUI B YACTHBIX IIPOU3BOJIHBIX M CMEXKHBIX
pasjiesiax aHaJM3a, OYeHb ILJIOJOTBOPHBIM OKA3aJ/ICsl TAK HA3BIBAEMbIN (DYHKIIMOHAJILHBII
moyxo1. Jlo cux mop paccMaTpuBaInch KybaTypHbIe (DOPMYJIBI, C TOMOIIBIO KOTOPHIX MPH-
OJIMIKEHHO BBIYUC/ISIETCS OMPEJIEIEHHBIN HHTerpaJj OT (DYHKITHN, KOTJa W3BECTHHI 3HaUTe-
HUsT 9TOI (PYHKIUH B OTHEIbHBIX TOUKAX-y3/1ax KybaTypHoit (popmysibl. Bo3amoxkHbI H0s1ee
obtme Ky6aTyprbie GopMyIIbI, KOTOPBIE BKIIOYAIOT KAk 3Hadenus QyHKIINN, TaK 0 3Hade-
HUSI €€ TTPOU3BOIHBIX TOTO WJIM MHOTO TOPsiKa. ECIim HaM N3BECTHBI HE TOJTHKO 3HATEHUST
dysxmun f () B HEKOTOPBIX TOYKaX 001acTh {2, HO U 3HAYCHUST €€ MPOU3BOJIHBIX TOIO UK
HHOTO TIOPSIJIKA, TO €CTECTBEHHO, YTO IPHU IIPABUIBHOM UCIIOJIB30BAHIHT BCEX STUX JAHHBIX
MOYKHO OXKHJIATH O0JIee TOUHOTO PE3yJsIbTaTa, YeM B CJIyUae UCIOIb30BaHUs TOJBKO 3Ha-
geHnii pyukuu. B manaoil pabore MbI MCCIEIyeM B3BEIIEHHYIO KyOaTypHYIO (hopMmymty
SPMUTOBA THUIA B (DYHKIMOHAIBHBIX ITPOCTPAHCTBAX Lgm), L;m), I_/gm) u3 C.JI. CoboneBa
Jtst PYHKIMIA, OMPE/ICICHHBIX B N-MEPHOM ¢JIMHUIHOM Kybe K, W MoJly9uTh BEPXHIOK
OIlEHKY HOPMbI (DYHKIIMOHAJOB OIMOOK B3BEIIEHHBIX KyOaTypHbIX dopmyi. Ha ocHoe
TeopeMbl baxBaioBa MOKa3bIBAETCs, ITO pACCMATPUBaEMble KyOaTypHbIE (POPMYIIBI SPMU-
TOBA THUIA OMTUMAJLILI IO MOPSIIKY CXOAMMOCTH B 9THUX mpocTpancTBax. OKa3biBaercs,
poben El()m) UMeeT DsiT TPEnMyTecTB. JlefiCTBUTENBbHO, IPEUMYIIIECTBO COCTOUT B TOM,
9TO, BO-TICPBBIX, JIjIsI HOPMbI (DYHKIIMOHAJIA IOTPEITHOCTH KyOaTypHbIX (hOpMYJT B IIPO-
CTpaHCTBe [_/Z(;m BLIYHC/THTETLHBIE OIEPAIIHT HAMHOTO MeHbIIe, 1eM B Ly, a BO-BTODBIX,
HOPMBI (DYHKITHOHAJIA OTPEITHOCTH KyOaTypHBIX (DOPMYJI, 3a/laHHBIX B ITPOCTPAHCTBAX
I_é,m) u Lgm) UMEIOT OIMHAKOBBIN TOPSIIOK CXOJMMOCTH K HYJTIO B N — 00.

KuirroueBbie cJsioBa: B3BellieHHas KybaTypHas dopmysia, OYHKIMOHAJI OIIHOKHU, IIPO-
crpanctBo CobosieBa, (PyHKITMOHATBHBIE TPOCTPAHCTBA, 0000IIeHHAs (DYHKITHS.

Hutuposauue: [lladumemos X.M., 2Kanronros O.HU.BecoBoit onTUMAaJbHBIA MOPSIIOK
CXOMMOCTH KyOaTypHbIX (opMys spmuToBa Tuna B npocrpancrse Cobosesa // Tlpo-
6J1eMBl BBIYHCINTEILHON U IpUKJIaHON MaTeMaTuku. — 2021, — Ne1(31). — C.91-107.



