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Abstract. The main area of application of various spaces of generalized functions lies in the theory of differential equations and in

the theory of quadrature and cubature formulas. Therefore, it becomes necessary to study spaces of generalized functions, one way

or another related to various domains in Rn. The theory of differential equations in the space of generalized functions differs from

the theory of these equations in the space of ordinary functions. Deriving these equations and finding their solutions are important

in applications. In the study of various questions arising in the theory of approximate integration and partial differential equations

and related departments of analysis, the so-called Functional approach turned out to very fruitful.

In this paper we investigate weighted cubature formula in the functional spaces L̄
(m)
p of S.L. Sobolev for the functions defined in

the n - dimensional unit cube Kn and obtain an upper estimate for the norm of error functionals of weighted cubature formulas.

Based on the Bakhvalov theorem it is proved that considered cubature formulas of the optimal on order of convergence in these

spaces.

INTRODUCTION

In many research papers examined the properties of optimal approximations of linear functionals [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13]. In these papers the problem of optimality with respect to a certain space are investigated. Most of

them are discussed in the Sobolev space [1].

We consider the cubature formula of the form

∫
Kn

p(x) f (x)dx ≈
N

∑
λ=1

Cλ f
(

x(λ )
)
. (1)

The generalized functional

�N (x) = p(x)εKn (x)−
N

∑
λ=1

Cλ δ
(

x− x(λ )
)

(2)

is called the error functional of the cubature formula (1),

< �N , f >=

∫
Kn

p(x) f (x)dx−
N

∑
λ=1

Cλ f
(

x(λ )
)

is an error of the cubature formula (1), p(x) ∈ Lp (Kn) is a weight function, εKn (x) is the characteristic function of Kn,

Cλ and x(λ ) are the coefficients and the nodes of the cubature formula (1) and δ (x) is the Dirac delta-function.

Definition 1 The cubature formula of the form (1) is called an optimal order of convergence, if for the norm of its

error functional following holds

lim
N→∞

∥∥∥�o.n
N |L̄(m)∗

p (Kn)
∥∥∥∥∥∥�o

N |L̄(m)∗
p (Kn)

∥∥∥ < ∞. (3)

Here �o.n
N (x) is error functional of optimal order of convergence cubature formulas (1).

In this paper we consider the problem of the descending order of norm of the error functional

∥∥∥�N |L̄(m)∗
P (Kn)

∥∥∥ with

an increase in the number of its nodes. The results, which we obtain here, are to the arbitrary distribution of points.
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A NORM ESTIMATION FOR THE ERROR FUNCTIONAL OF WEIGHTED

CUBATURE FORMULAS ON THE SPACE L
(m)
p

Definition 2 The space L
(m)
p (Kn) is defined as a space of functions, given on a n- dimensional unit cube Kn and having

all the generalized derivatives of order m, summable with a degree p in norm [1]:

∥∥∥ f |L(m)
p (Kn)

∥∥∥=

⎧⎨
⎩
∫
Kn

{(
∂ m f (x)

∂x1
m1 ∂x2

m2 ...∂xn
mn

)p}
dx

⎫⎬
⎭

1
p

, (4)

and the norms of the error functional in the Sobolev space have the following form

∥∥∥ f |L(m)
p (Kn)

∥∥∥=

⎧⎪⎨
⎪⎩

⎧⎨
⎩
∫
Kn

∑
|α |=m

m!

α!
(Dα f (x))2

dx

⎫⎬
⎭

p
2

⎫⎪⎬
⎪⎭

1
p

, (5)

where |α|= α1 +α2 + ...αn, α! = α1! ·α2! · ...αn! and Dα f (x) =
∂ |α| f (x1,...,xn)

∂x
α1
1 ∂x

α2
2 ...∂x

αn
n

.

Obviously, in the right hand side of (4) is less computing, than in (5), and it follows that the norm of the function in

space L̄
(m)
p (Kn) the number of computing operations will be much less, than in the space L

(m)
p (Kn), as in the norm (4),

involved only the mixed derivatives.

Now we prove the following theorem, which is one of the main results of this work.

The following is true.

Lemma 1 If for the error functional (2) of the cubature formula (1), the following conditions are fulfilled

�N (x) = �N1
(x1) · �N2

(x2) · ... · �Nn (xn) ,

where

�Ni
(xi) = pi (xi)ε[0,1] (xi)−

Ni

∑
λi=1

Cλi
δ

(
xi − x

(λi)
i

)
, p(x) =

n

∏
i=1

pi(xi)

and

∥∥∥�Ni
|L̄(mi)∗

p (0,1)
∥∥∥≤ di

1

N
mi
i

, di are constants, (6)

that is

∥∥∥�Ni
|L̄(mi)∗

p (0,1)
∥∥∥≤ di O

(
h

mi
i

)
, di are constants,

(
i = 1,n

)
,hi =

1

Ni

(7)

then

∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤ d · 1
n

Π
i=1

N
mi
i

, d is constant, (8)

or ∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤ d ·O(
h

m1
1

) ·O(
h

m2
2

) · ... ·O(hmn
n ) ,

d =
n

∏
i=1

di and m = m1 +m2 + ...+mn.
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Proof. We conduct the method of the mathematical induction.

Suppose n = 2 , x = (x1,x2), |α| = α1 +α2, m = m1 +m2, dx = dx1dx2, f (x) = f (x1,x2), p(x) = p1 (x1) · p2 (x2)
and �N (x) = �N1

(x1) · �N2
(x2).

If presume in (4) n = 1, then

∥∥∥ fi|L̄(mi)
p (0,1)

∥∥∥=

⎧⎨
⎩

1∫
0

[(
∂ mi

∂x
mi
i

f (xi)

)p]
dxi

⎫⎬
⎭

1
p

, i = 1,2, ...,n. (9)

So, we have

|< �N (x1,x2) , f (x1,x2)>|= |< �N2
(x2) ,< �N1

(x1) , f (x1,x2)>|
≤
∥∥∥�N2

(x2)|L̄(m2)∗
p (0,1)

∥∥∥ ·
∥∥∥< �N1

(x1) , f (x1,x2)>|L̄(m2)
p (0,1)

∥∥∥ . (10)

We compute the following norm:

∥∥∥< �N1
(x1) , f (x1,x2)>|L̄(m2)

p (0,1)
∥∥∥=

⎧⎨
⎩

1∫
0

[∣∣∣∣ ∂ m2

∂x
m2
2

< �N1
(x1) , f (x1,x2)>

∣∣∣∣
p]

dx2

⎫⎬
⎭

1
p

=

⎧⎨
⎩

1∫
0

[∣∣∣∣< �N1
(x1),

∂ m2

∂x
m2
2

f (x1,x2)

∣∣∣∣
p]

dx2

⎫⎬
⎭

1
p

≤
⎧⎨
⎩

1∫
0

[(∥∥∥�N1
(x1)|L̄(m1)∗

p (0,1)
∥∥∥ ·

∥∥∥∥ ∂ m2

∂x
m2
2

f (x1,x2)|L̄(m1)
p (0,1)

∥∥∥∥
)p]

dx2

⎫⎬
⎭

1
p

=
∥∥∥�N1

(x1)|L̄(m1)∗
p (0,1)

∥∥∥ ·
⎧⎨
⎩

1∫
0

⎧⎨
⎩

1∫
0

[(
∂ m1+m2

∂x
m1
1 ∂x

m2
2

f (x1,x2)

)p]
dx1

⎫⎬
⎭dx2

⎫⎬
⎭

1
p

=
∥∥∥�N1

(x1)|L̄(m1)∗
p (0,1)

∥∥∥ ·∥∥∥ f (x)|L̄(m)
p (K2)

∥∥∥ . (11)

Thus, from (10) and (11) we obtain

|< �N (x1,x2) , f (x1,x2)>| ≤
∥∥∥�N2

(x2)|L̄(m2)∗
p (0,1)

∥∥∥ ·∥∥∥�N1
(x1)|L̄(m1)∗

p (0,1)
∥∥∥ ·∥∥∥ f (x)|L̄(m)

p (K2)
∥∥∥ . (12)

From (12), using the definition of norm, we have∥∥∥�N (x)|L̄(m)∗
p (K2)

∥∥∥≤
∥∥∥�N1

(x1)|L̄(m1)∗
p (0,1)

∥∥∥ ·∥∥∥�N2
(x2)|L̄(m2)∗

p (0,1)
∥∥∥ . (13)

Taking into account (7), on the basis of (13) we obtain

∥∥∥�N |L̄(m)∗
p (K2)

∥∥∥≤ d1 ·d2
1

N
m1
1 N

m2
2

.

That is ∥∥∥�N |L̄(m)∗
p (K2)

∥∥∥≤ dO
(
h

m1
1

)
O
(
h

m2
2

)
, (14)

where d = d1 ·d2.

Now suppose that the inequality (8) holds for n= k, then on the basis of the above calculations we obtain the following

results

∥∥∥�N |L̄(m)∗
p (Kk)

∥∥∥≤ d · 1

N
m1
1 ·Nm2

2 ...N
mk

k

, where d =
k

∏
i=1

di (15)
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or ∥∥∥�N |L̄(m)∗
p (Kk)

∥∥∥≤ d · O
(
h

m1
1

)
...O

(
h

mk

k

)
. (16)

Using the validity of lemma at |< �N (x1,x2) , f (x1,x2)>| ≤
∥∥∥�N2

(x2)|L̄(m2)
∗

2 (0,1)
∥∥∥, we prove that the assertion holds

for n = k+ 1. Taking into account (15), at n = k+ 1 we estimate error of cubature formula of the form (1)

∣∣< �Nk+1
(x1,x2, ...,xk+1) , f (x1,x2, ...,xk+1)>

∣∣
=
∣∣< �N1

(x1) ,< �N2
(x2) ,<, ... < �Nk

(xk) , �Nk+1
(xk+1) , f (x1,x2, ...,xk+1)> ... >

∣∣
≤
∥∥∥�N1

|L̄(m1)
∗

P (0,1)
∥∥∥ ...

∥∥∥�Nk
|L̄(mk)

∗
P (0,1)

∥∥∥ .
∥∥∥< �Nk+1

(xk+1) , f (x1,...xk+1)> |L̄(mk+1)
∗

P (0,1)
∥∥∥ (17)

Hence, as above, using the definition of norms of functional, we get

∥∥∥�N |L̄(m)∗
p (Kk+1)

∥∥∥≤
∥∥∥�N1

(x1)|L̄(m1)∗
p (0,1)

∥∥∥ · ... ·∥∥∥�Nk
(xk)|L̄(mk)∗

p (0,1)
∥∥∥ ·∥∥∥�Nk+1

(xk+1)|L̄(mk+1)∗
p (0,1)

∥∥∥ . (18)

From inequalities (6) and (18) we obtain

∥∥∥�N |L̄(m)∗
p (Kk+1)

∥∥∥≤ dk+1 · 1

N
m1
1 ·Nm2

2 ...N
mk+1

k+1

, (19)

or

∥∥∥�N |L̄(m)∗
p (Kk+1)

∥∥∥≤ dk+1 ·O
(
h

m1
1

)
...O

(
h

mk+1

k+1

)
, where dk+1 =

k+1

∏
i=1

di.

Summarizing the results obtained, in conclude by noting that

∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤ d · 1

N
m1
1 ·Nm2

2 ...N
mn
n

,hi =
1

Ni

,
(
i = 1,n

)
, where d =

n

∏
i=1

di (20)

or taking into account (7), from (19) we have

∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤ d ·O(
h

m1
1

)
...O

(
h

mn
1

)
,d is constant (21)

or

∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤ d ·O(hm) , where d =
n

∏
i=1

di. (22)

Lemma is proved.

Thus, we obtain an upper estimate for the norm of the error functional (2) for cubature formula (1) in the space

L̄
(m)∗
p (Kn).
A similar assessment was obtained previously for the norm of the error functional of cubature formula (1) on the

quotient space of S.L. Sobolev L
(m)
p (Kn) [11] and as a result we have received the same order of convergence to zero

as N → ∞, although the norm of function was defined in different ways, this is confirmed by the inequality [11], (22).

With the help of this lemma, it is easy to prove the following theorem.

Theorem 1 The weight cubature formula (1) with the error functional (2) at N1 = N2 = ... = Nn,
n

Π
i=1

Ni = N and

m1+m2+ ...+mn =m is the optimal in order of convergence the space L̄
(m)
p (Kn) , for the norms of the error functionals

(2) of the cubature formula (1) have the equality

∥∥∥�N |L(m)∗
p (Kn)

∥∥∥= O

(
N−m

n

)
.
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Proof. On the basis of Lemma at N1 = N2 = ...= Nn we have Ni =
n
√

N, i = 1,2, ...,n.

Thus,

n

∏
i=1

N
mi
i = N

m1+m2+...+mn

1 = N
m
n . (23)

By substituting (23) into inequality (20), we obtain

∥∥∥�N |L̄(m)∗
p (Kn)

∥∥∥≤C ·N−m
n . (24)

By N.S. Bakhvalov theorem [14] and the inequality (24) follows the proof of the theorem.

CONCLUSION

In this paper we investigate weighted cubature formula in function space L̄
(m)
p of S.L. Sobolev for the functions defined

in the n - dimensional unit cube Kn and obtain an upper estimate for the norm of the error functional of weighted

cubature formulas. Based on the Bahvalov N.S theorem it is proved that considered cubature formulas are an optimal

on order of convergence in these spaces. At the end, it is argued that the weighted cubature formulas in spaces have

the same order of convergence, although for the norm of the error functional of these cubature formulas in the space

only mixed generalized derivatives are involved and these formulas can be called practical.
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