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Weight Optimal Order of Convergence Cubature Formulas in
Sobolev Space

Ozodjon Jalolov®
Bukhara State University, Bukhara 200117, Uzbekistan
A Corresponding author: o_jalolov@mail.ru

Abstract. In this paper we investigate weight cubature formula in function spaces of S.L. Sobolev Lgm),L,(Jm), Egm) for the
functions defined in the n - dimensional unit cube Kj, and obtain an upper estimate for the norm of error functionals of weight
cubature formulas. The basis of theorem N.S. Bahvalov it isproved that consideredviewed cubature formulas are optimal on order
of convergence in these spaces.

INTRODUCTION

In many research papers examined the properties of optimal approximations of linear functionals [1-28], and others.
In these papers the problem of optimality with respect to a certain space are investigated. Most of them are discussed
in the Sobolev space [1]. Consider the cubature formula of the form

. N
[rsdr= ¥ cur (). (1)

Ky

in the space Lém) (Ky), where K, is a n- dimensional unit cube. A generalized function

N
EN(x):p(x)eKn(x)—; C;LS(x—x(M), (2)
=1

is called a error functional of the cubature formula (1),
u A
<lw.f >= [ pfdx= Y Cof (), ()
£, A=l

is an error of the cubature formula (1), p (x) is a weight function, &g, (x) is characteristic function of K, C; and x(*)
are coefficients and nodes of the cubature formula (1) , d (x) is the Dirac delta- function.

Definition 1. The space Lgm (K,) is defined as the space of functions, given on the n- dimensional unit cube K,, and
having all the generalized derivatives of order m, square summable in norm [1]:

1

2

’: /Z Z—:[D“f]zdx : 4)

K, |ot)]=m

/18 )

with the inner product
!
(f. @)y = ] L GD%f - D¥pdx,

Ky, |ot|=m
where |a| = o) + 0 + ... + &, dx = dx1dxy...dx, and ol = o lop! - - - o,

Definition 2. The cubature formula of the form (1) is called asymptotically optimal, if for the norms of error
functional the following equality holds

60137 (k)
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Here, (%, (x) and ¢ (x) are error functional of optimal and asymptotically optimal cubature formulas of the form (1),
respectively.

Definition 3. The cubature formula of the form (1) is called an optimal order of convergence, if for the norm of its
error functional the following holds

/e )
1\1/1m Ok < oo, (6)
= e /L &)

Here £3/" is error functional of optimal order of convergence cubature formulas (1). In this paper we consider
o /L5 (&)

with an increase in the number of its nodes. The results, which we obtain here, are to the arbi-

and

the problem of the descending order of norm of the error functional HKN / Lé'")* (Kn)

e /28 (k)
trary distribution of points.

s

OPTIMAL IN ORDER OF CONVERGENCE OF WEIGHT CUBATURE FORMULAS IN
THE SPACE L") (K,,)

Here we explore weight cubature formulas, which are optimal for the convergence order. We have the following Here
we explore weight cubature formulas, which are optimal for the convergence order. We have the following
Lemma 1. If for error functional (2) of cubature formula (1) satisfies the conditions

Oy (x) = by, (x1) - Iy, (x2) - .. -, (xn) (7)
and
HeNi/Lgmi)* (0, 1)H < ci%, (i=1,n),c¢;— constants (8)
that is
m;)* m; ., T 1
Hﬁw,-/Lé ! (Ovl)HSciO(hil)v(l:Ln)’hi:ﬁ ®)
then
HKN/Lém)* (Kp)|| <c- n;,c — constants (10)
1N/
i=1
or
w /187 ()| < -0 (i) -0 (12 .- 0 ), (11)
where

Ni
v, (xi) = p (xi) €01y (ki) — ) C1,8 (xi _le) ;
ps

n n -
px)=TIpi(xi)sce=Tlciandm=my +my+...+my,m; > 1,i= (l,n).
i=1 i=1

We are c:)nducting proz)f by mathematical induction.
Suppose n = 2, then
x=(x1,x), |al=o1+0, m=m+my, dx=dxidx, f(x)=7Ff(x1,x),
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p(x)=pi(x1)-pa(x2) and Ly (x)= "Ly, (x1)- Ly, (x2).
If we assume in (4) n =1, then
1

2 2

1
sfrr o= [ e ).
0

Thus, we have

|< Uy (x1,%2), f (x1,%2) > = [< Ly, (x2), < Lwy (x1), f (x1,%2) >>] <

< Hez (xz)/Lg’”z)* (0,1)H : H< Oy, (1), f (x1,32) >/Lg’”2> (0, 1)”.

Taking into account (12), (13) we compute the following norm [13]:
1
2 2

H<€N1 (x1), f (x1,x2) >/Lm2 0,1 H— /‘ d”:jz <Ly, (x1), f(xl,xz)>’ dx; y =

1
2 2

f(xi,x2) >‘ dx; p <

my

< eNl (x1) 5 ?};2

/

Bl

2

1
dm
<4 [l /28 0.0 | s ) [0 00| -
2
0

D=

2

1 1
oot ol [T s an o) -
0 0

:HZN] (X])/Léml)* (071)H. 0/10/1[ 8:1’11:;’";2 )] W\

/
,C —constants.

/
=C

v, () /28" 1) ||| @ /28" (k)

Thus, from (13) and (14) we obtain
|< KN (.X],.Xz) ,f(Xh)Cz) >| S

< HENZ <x2)/Lgmz>* (0,1)H : HENI (xl)/Lg””)* (0, 1)H : Hf(x)/Lg"’) (KZ)H.

Taking into account (4) from (15) we obtain

() /28" ) ex, () /25 0.1).

oo ] ¢
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Using (8), from (16) we have

Y
that is
e /12 o) | < o (1) 0 (1) (17)

where ¢§ = ¢’ ¢ - cs.

Now suppose that (10) is valid for n = k, then from the above calculations we obtain [23]
[< Uy (x),f(x) > =<y (x1,X2, s Xk) 5 (X1,%0, 0, Xp) >| =

= ‘< ka (xx), < éN,H (k1) 5oy < ZNZ (x),< €N1 (x1), f (X1, X2, 0y %) > ... >| <

< HéNk (xk)/Lg'tk)* (0,1)H . HKNH (xkil)/Lg'nk—l)* (()J)H
H< Oy (1), f (1,2, 005 X) >/Lgml)* (W I)H <

< H&vk (xk)/Lg'"kV (0, 1)H HKNI (xl)/Lg"l)* (xl)H W x)/Lg”” (Kk)H. (18)
From (18), considering (13), we have
HeN/Lg"ﬂ* (Kk)H <" ||ey, (x1>/Lg"1>*< H Hka X /L 0 1)H (19)
Then, referring to (8), from (19) we obtain
HEN/L;"V (Kk)H <" c1coency W (20)

or, considering (9), from (20) we have
w187 (k)| < ¢ -0 (k1) .0 ("), where dy = nc,

Using the validity of assertion n = k, we prove that the assertlon executed when n = k+ 1. Thus, whenn =k + 1, and
taking account of (4) and (19), we obtain

|< éNkJrl (xl,xz,...,xkﬂ),f(xl,xz,...,xkﬂ) >| =
|< vy (1), < Uy (x2) < oo < (k) 5 < Uy (kt) o f (1,22, s X ) > o > <

< HeN] (x,)/Lg"“)* (0,1)H HeNk (x)/Lg’"“* (0, 1)H.

H< Ongy (1) f (61X, s X 1) >/Lg’"k+1) (0, 1)”. (21)

Using (4) and (19) from (21) we obtain

HEN/L (Kis1) H<c (x1) /L'"' (0, 1)H
: Hsz (%) /L;’”k) (0, 1)H - HéNkH (ves1) /L;Mk+1> (0, 1)H . (22)
By using (8) from (22) we have
HZN/L " (K1) H <" diyy- m7
where
kil
i1 = []ei (23)
=1
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or, taking into account (17), from (23) we obtain

HEN/L (Kiy1) H <" diy-O(R") .0 (h;(nfll) " constants, (24)

in conclusion consider, that

(m)* !
Jov /" )| < - Sz )
where ¢ = ¢ diy1.
or, considering (9), from (25), we have
Hé Ji L0 (KM ...0 (™).
With the help of this lemma it is easy to prove the following theorem.
Theorem 1. The weight cubature formula (1) with the error functional (2) for Ny =N, = ... = N, InI N; = N and
i=1

my +my + ... +m, = m is optimal in order of convergence in the space Lgm (K,), those, for the norm of the error
functional (2) of cubature formula (1) the following holds

0 ] -0(o).
Proof. On the basis of Lemmal under the Ny =N, = ... = N, have N; = /N.
Thus,
e 29

i=
By substituting (26) into (25) we obtain

m

N (27)

e/

From theorem of N.S. Bahvalov [24] and from the inequality (27) follows the proof.

A NORM ESTIMATION FOR THE ERROR FUNCTIONAL OF WEIGHT CUBATURE
FORMULAS ON THE SPACE L\") (K,,).

Consider the cubature formula of the form

[ptastas= 3 cur (). 28
=1

Ky

(28) in the Sobolev space Ls,m) (K»), where K, is n-dimensional unit cube.
The generalized function

Oy () = p(x) ek, (x ch( ) (29)

=1

is called error functional of the cubature formula (28),

N
<Un,f>= /p(x)f(x)dx— Z C.f (x(l)>
Z, P

020014-5



is an error of the cubature formula (28), p (x) € L, (K,) is a weight function, &g, (x) is the characteristic function of
K, C;, and x*) are coefficients and nodes of the cubature formula (28) and & (x) is the Dirac delta function.

Definition 4. The space Lg,m) (K,) is defined as a space of functions, given on a n- dimensional unit cube K,, and
having all the generalized derivatives of order m, summable with a degree p in norm [1]:

1
4 P

|
/e @ =< [ { Y ’”;[D“ff} dxp (30)
i o O
a_ " - Y a l=o!-a!-...- 0!
where D *ax‘l’“axg‘l...ax,?”’m'*j)::la/’ al=ol-op!-... ol

The following is true
Lemma 2. If for the error functional (29) of the cubature formula (28), the following conditions are fulfilled

éN ()C) = €N1 (Xl) '£N2 ()Cz) tae 'an ()Cn) s

here ¢ N — oo (s .,Nica‘f(%‘) T (e
where £y, (xl) Pi (xl)8[071] ('xl) l):l 2,0\ Xi —X; s p(x) 'I_Ilpl('xl)
i= i=
and
AW 1
HENI'/LEJml) (0, 1)” < diW7 d; — constants, (31)
that is
(m,-)* mj . 1
HZN,./L,, (0, I)H <d;0 (hl. ) , d;—constants, (l = l,n) Jhy = N (32)
then
n)* 1
HEN/LED ) (Kn) || <d-— , d — constants, (33)
1N
i=1
or
v /157" (K| < a0 (k) -0 (17 -0,

n
d=[ldiand m=my+my+...4+m,.
i=1
Proof. We conduct the method of the mathematical induction. Suppose n =2 x = (x1,x2), || = &) + 0, m =
my+my, dx =dxidxy, f(x) = f(x1,x2), p(x) = p1 (x1) - p2 (x2) and y (x) = Ly, (x1) - L, (x2) .
If presume in (30) n = 1, then

P is
2

ﬁ/Lﬁ,mf)(o,l)H: /IKCZ:,;f(x,-))Z] dx;iy , i=1.2,..,n. (34)
) i

So we have

|< Oy (x1,x2), f(x1,x2) >| = [< Uy, (x2), < U, (x1), f (x1,x2) >>] <

< HeNz (xz)/LE,mz)* (O,I)H : H< Oy, (1), f (x1,32) >/L§,’"2) (0, 1)”. (35)

020014-6



We compute the following norm:

.1
2772 P
H<6N1(x1>,f(x1,xz)>/L§;”2>(0,1)H{ l;’%<eNl(x1>,f<x1,xz>> dXZ} -
2

P
215
]dxz} <

mzf(xlaxz)/LLml) o, 1)'

Sl O—

1
= {{ U< le (xl),%f(xl,xz)

e i)
= | e /2 @.1)| -4 { { [( T <X1,xz>)2rdxl}dxz}p:

=d ||t () /L5 0, 1)| | £ 0 /L7 (k)

where d’ -constants.
Thus, from (35) and (36) we obtain
|< ZN (x17x2) af(-x17-x2) >| S

s (x2) /L™ O.1)|| - [ ew, o) /£ 01| |17 00 /257 (k) |

From (37), using the definition of norm, we have

vt ] <

Taking into account (31), on the basis of (38) we obtain

<d

() /25 (0.1)]| ||, () /17 0.1

HEN/L;”L H < d- dy -y —m—my m]Nmza
that is
(m)x my ny
v /1" (o) | < as0 () 0 (n52).
where

dy=d -dy-d>.
Now suppose that the inequality (33) holds for n = k, then on the basis of the above calculations we obtain

|< Uy (x), f(x) > = [< by (x1,%2, %), f (X1,X2, ., X5) >| =
= ‘< ka (xk),< ENF] (xkfl),...,< sz (X2),< ‘€N1 (x1)7f(x1,x2,..,xk) >> .. >> <

S‘&(\i‘k")/Lgn")*(OJ)H'Hfzvk_. (inl)/L;mkq)* (O’I)H""
H< Ony (1) 3 f (1,22, s %) >/L§,"”) (0, I)H <

O () L O, |- Ge) /25 e[ 0 /287 (R
where d” - constants.

From (40), using the definition for norm of the error functional, we obtain

oo 50 <o 0 00 o 0]

< d//
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Then, using (31), the inequality (41) reduces to

N e —

k
where d = [] d;
or =

w15 (k)| < a”-a- 0 () .0 ().

Using the validity of lemma (2) at n = k, we prove that the assertion holds for n = k+ 1. Taking into account (40), at

n = k+ 1 we estimate error of cubature formulas for the form (28)
’< gNkJr] (x17x27"'7xk+1)af(-xlax27-~-axk+l) >‘ =
= H‘€N1 (xl),< ENZ(XQ)7< < ka(xk),< ka“ (ka),f(xl,xg,...ka) >> . >>>H <

< HeM (xl)/Lﬁ,’””* (0, 1)H o Hsz(xk)/Lﬁ,’"k)* (0, 1)H.

H< €Nk+l(xk+1) f(xl,)Cz, xk+1 >/L i) (O,I)H

Hence, as above, using the definition of norms of functionals, we get

T e T

. HgNk (xk)/L;mk)* (0, I)H . HgNkH (xk+1)/LE7n1k+l)* (0, 1)H .
From inequalities (31) and (43) we obtain

1

N N2 LNSE

HEN/L (Kit1) H<d “diyr
k1

or

e /157" (Ko < d" s -0 () .0 (7).

k+1
where dy| = H d;

Summarizing the results obtained, in conclude by noting that

oo

(45) or, taking into account (32), from (44) we have

Jow /i
Lemma 2 is proved.
With the help of this lemma it is easy to prove the following theorem.

1
d —m——— -
N NYRLNGT

(h")...0(K\"™), d—constant.

Theorem 2. The weight cubature formula (28) with the error functional (29) at Ny = N, =

..=N,, TIN; =N and
i=1

my +my + ... +m, = m is optimal in order of convergence in the space L;,m) (Ky), for the norms of error functional

(29) of the cubature formula (28) have the equality

oo
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Proof. On the basis of Lemma 2 at N =N, = ... = N, we have N; = /N, i = 1,2,....n. Thus,
o m; 7 e my, m
lI:_I]]vl :N;n1+1’12+ +m — N7, (46)
By substituting (46) into inequality (45), we obtain

e/ &

From the N.S. Bakhvalov theorem [24] and the inequality (47) follows the proof of the theorem.

NH. (47)

WEIGHT CUBATURE FORMULAS IN THE SPACE L\ (K,,)

Multidimensional cubature formulas differ from the one-dimensional with two features
1) infinitely varied forms of multidimensional areas of integration;

2) rapidly grows number of integration nodes with increasing space dimension.
Problem 2) requires special attention to the construction of the most efficient formulas.

Here, we discuss the formula with taking into account this requirement. It is known, that such formulas are called
by N.S. Bakhvalov as "practical formulas" [24].
We regard the weight cubature formula

. N
[ s dx ras (x®). (48)
=1

Q

in space l_,gm) (Ky), where K, - n - dimensional unit cube and p (x) € L, (K,) is weight function. In the cubature
formula (48) comparable to generalized function

Iy (x) = p(x) ek, (x ch ( ) (49)

=1

and we call it a error functional.
Definition 5. The space l_ém) (K,) is defined as the space of functions, given on the K, and the norm of a function,
which is determined by the following equation

/28 &)

where my +mp+ ...+ m, =m,m; >0, i=1,n

with the scalar product
_ (9" (9"¢(x)
(f’(p)ié”’)(l(n) _K/< oxm > < ax" dx’

n

1

2
_ 9" f (x) ?
-4 (e ) o5 0

Ky

where Jx™ = Jx|" x5 ...0XM™,  m=my+my+..my, dx=dxidx,..dx,.

As it is known [1], the norm of a function in the space Lg") (K,) determined by the formula

I s

2

/Z @ X)) dx b (51)

020014-9



a‘mlf(xl ----- Xn)

where ‘(X| =0y +0+..0, ol = al!.(X2! . (Xn‘ and Daf<x> = o alaxag axa" .
2

Suppose that in (51) n = 2 and m = 2, then we obtain the following

m ("f)\, [ 20 ([ PrE) N
K/Iazma!( ax™m ) dx-/ Zza!a2!<8xllx'8xgz> =

K o +0p

(R e ) ()]

When n =2 and m = 2 equality (50) takes the following form:

b= | ()

(53)

Obviously, in the right hand side of (53) is less computing, than in (52), and it follows that the norm of the function

in space I:gz) (K>) the number of computing operations will be much less, than in space ng) (K>), as in the norm (53),
involved only the mixed derivatives. Now we prove the the following theorem, which is one of the main results of

this work.

Theorem 3. If, for the error functional (49) of the weight cubature formula (48) in the space barLém) (K,) the

following conditions are fulfilled

Iy (x) =y, (x1) - Ln, (x2) <o €, (Xn)

and
0 /L mi)* 1
N,./L2 (0,1) §d,~w. d;— constants
that is
7 (m;)* m; . _ 1
HEN,/L2 (0, I)H <d;0 (hl- ), d; — constants, (i = 1,71) ,h; = A
i
then
—(m)* 1
HEN/Lgm) (K,) = , d—constants,
1N
i=1
or
7 (m)* my m2 "y
w18 (k)| < a-0 () -0 (152) -0 )
where

b () = i (x) €. () ch (5=2), px) = [T pitw),

d= l‘nl di, m=my +my+ ...+ m, and m;- is arbitrary (i =1,n), and m; > 1.

i=1

Proof. We are conducting proof by mathematical induction.
Suppose n = 2, then
x=(x1,x0), || = a1 + 0, m = m| +my, dx = dx1dxy, f (x) = f (x1,x2),

020014-10



p(x) = p1(x1)-p2(x2) and by (x) = by, (x1) - Uy, (x2) .-
If presume in (50) n = 1, then

1

(ﬁ/ig’"ﬂ(m)H: /(329?1.)) dxiy (i=Tn).

0

Thus, we have

|<€N(X17X2)7 *(x1x2)>|—|<€1v2( 2), <ty (1), f (x1,02) >>| <
e ) 28 1) < b (o) e ) > /18 0,1 )
We compute the following norm:
1
2 2
H<le (01, f (x1.x2) >/L§’”2)(o,1)H= / aax";mzz <ty (x1), f(xl,x2)>’ dv, b =
0
1 4
/ o (1), 2o (xy x2)>‘ dn b <
/ < LN, ’ax;nz , >
1 >
[l ol s sson] o)
0
1
* | | gmitm : ’
ot 0] 4 3 et an -
0 |0
=[x, en) /2 0, 1) [ 0 /28 () (59)
e )/
where x = (x1,x;) and m = m| +mj.
Thus, from (58) and (59) we obtain
|< Oy (x1,%2), f (x1,x2) >| < H€N2 X2 /L (0, I)H
Jew ) /2 .0 [ £ 00 /28 (k)| (60)
Considering (50) from (60) we obtain
HzN/zg"V (KZ)H§H£N1 (e) /1" (0,1) H Hézvz %) /18", 1)H (61)
Taking into account (54) from (61) we have
H[N/ng)* (Kz)H <di 'dZ'Mv

020014-11



or
Jov /187 | < a0 ) -0 0.

where ds = d - d>.
When n = k we obtain

|< Uy (x),f(x) > =<y (X100, 0) , f (X1,X2,0,0%) >[ =

|< Ong (X0) s < Uy (k=) 5o < Uy (x2), < Ly (1) f (X152, 00, x5) >>
< ||ewe () /T 0, 1)” : Hkafl () [T 0,1)]

H< Oy, (1) o (31,32, oo 32 >/£<2’“1) (0, 1)” <

>

< Hka (xk>/zg"k>* (o,1)H HEM (xl)/zg’"”* (xl)H . Hf(x)/ig’") (Kk)H.

From (63), taking into account (50) we have

e /187 ()| < [Jew, ) /287 0.1 e () /28 0,
Then in view of (54) from (64) we obtain

1

HKN/LSH)* (Kk)H sdym Ny2 LN
. Y

k
where d =TI d;,
i=1

or, taking into account (55), from (65) we will have

on /187" ()| < d-0 () 0 (1)

Using validity of the assertion of theorem 1 for n = k, we prove that the assertion is performed when n = k+ 1.

Thus, suppose n = k + 1, then taking into account (50), from (64) we have

| < g1 (X152, s Xp1) o f (1,22, 00, Xpg1) >| =

= |< gNl (x1),< ENZ (n),<,...< ka (xx) ’gNkH (1) s f (X152, ooy X 1) > e >| <

< HeNl (xl)/zg’"”* (0,1)H HeNk (xk)/ig’"k)* (0, 1)H.

H< Ny (K1) s f (K15 X2,5 03011 >/L§mkﬂ) (0, 1)”-

Using (50) and (64) from (66) we obtain

HEN/Lgm)*(KkH)H < H&vl (xl)/igmk)* (0, I)H

w0 J2E O |- s Grcn) /T 0,1)

020014-12

1)H.

<



By using (54) from (67) we have
1

HeN/L Kk+1 H < dk+lm7 (68)
or, considering (62) and (68) we obtain
m k1
HEN/L Kk+1 H < dk+1 0( ) O(hkjjl) 5 where dk+1 - ‘Hl d,‘.
=
Thus obtained inequalities (56) and (57):
HEN/ZW)* (K| < ;, d — constants, (69)
2 TN NYR LN
or, considering (55) from (69) we obtain
1
e /2877 ¢ (m™).O(h"™), b=, i=Tpn, (70)
i
where d = H d;.
If, in (69) or (70) suppose N =Nj-Np-...-N,, Ny = N, = ... = N, and mj +my + ... +m, = m then we have
e /257
or
H(N/L (h™), d— constant, h=N"n. (71)

which was needed of proof. Theorem is proved.

Thus, we obtain an upper estimate for the norm of the error functional (49) for cubature formula (48) in the space
l—ém)* ( Kn) .
A similar assessment was obtained previously for the norm of the error functional of cubature formula (48) on the
quotient space of S.L. Sobolev Lgm) (K,) and as a result we have received the same order of convergence to zero as
N — oo, although the norm of function was defined in different ways, this is confirmed by the inequality (27), (71).
For illustration, we present an example at n = 2. Suppose

(x1,%2) = €1 (2 —x2> . (72)

Obviously, that the derivatives
"1 f(x1,x0) If(x1,%)
PR and o5
m=my+mpitisclearthatm; =m—1landmy, =1,inthatm—1+1=m

Hence it follows that f (xj,x;) € ng) (K>) whenmy =m—1,mp =1 and f (x;,x2) éLém) (K7).

2 3
are continuous on K5, but %}C;n) has a feature on K,. Therefore, from the condition

CONCLUSION

In this paper we investigate weight cubature formula in function spaces of S.L. Sobolev Lgm>,L§,m), Lgm) for the func-

tions defined in the n - dimensional unit cube K,, and obtain an upper estimate for the norm of error functionals of
weight cubature formulas. The basis of theorem N.S. Bahvalov it isproved that consideredviewed cubature formulas
are optimal on order of convergence in these spaces.
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