



«AMALIY MATEMATIKA VA AXBOROT TEXNOLOGIYALARINING ZAMONAVIY MUAMMOLARI» XALQARO ILMIY-AMALIY ANJUMAN TEZISLAR TOʻPLAMI

ABSTRACTS INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE «MODERN PROBLEMS OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGIES»

ТЕЗИСЫ

МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ
«СОВРЕМЕННЫЕ ПРОБЛЕМЫ ПРИКЛАДНОЙ МАТЕМАТИКИ И
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ»

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ БУХОРО ДАВЛАТ УНИВЕРСИТЕТИ АХБОРОТ ТЕХНОЛОГИЯЛАРИ ФАКУЛЬТЕТИ

АМАЛИЙ МАТЕМАТИКА ВА АХБОРОТ ТЕХНОЛОГИЯЛАРИНИНГ ЗАМОНАВИЙ МУАММОЛАРИ

ХАЛҚАРО МИҚЁСИДАГИ ИЛМИЙ-АМАЛИЙ АНЖУМАН

МАТЕРИАЛЛАРИ

2021 йил, 15-апрель

ТАШКИЛИЙ КЎМИТА

Раис: Хамидов О.Х., БухДУ ректори, профессор

Раис ўринбосари: Қаххоров О.С., БухДУ проректори, доцент

Ташкилий қумита аъзолари:

Жўраев А.Т. БухДУ, проректори, доцент

Рашидов Ў.У. БухДУ, проректори Зарипов Г.Т. БухДУ, доцент Эшанқулов Х.И. БухДУ, декан, т.ф.д.

Жалолов О.И. БухДУ, кафедра мудири, доцент Сайидова Н.С. БухДУ, кафедра мудири, доцент

Жумаев Ж. БухДУ, доцент Болтаев Т.Б. БухДУ, доцент Зарипова Г.К. БухДУ, доцент БухДУ, доцент БухДУ, доцент

 Хаятов Х.У.
 БухДУ, катта ўқитувчи

 Жўраев З.Ш.
 БухДУ, катта ўқитувчи

 Атаева Г.И.
 БухДУ, катта ўқитувчи

 Турдиева Г.С.
 БухДУ, катта ўқитувчи

ДАСТУРИЙ ҚЎМИТА

Арипов М.М. ЎзМУ, профессор Алоев Р.Ж. ЎзМУ, профессор

Шадиметов Х.М Тошкент давлат транспорт университети, профессор

Расулов А.С. Жахон иктисодиёти ва дипломатия

университети, профессор

Равшанов Н. ТАТУ хузуридаги АКТ илмий-инновацион марказ, лаборатория

мудири, профессор

Солеев А.С. СамДУ, профессор Дурдиев Д.Қ. БухДУ, профессор

Хаётов А.Р. В.И.Романовский номидаги Математика институти, профессор

Мўминов Б.Б. ТАТУ, профессор Худойберганов М.У. ЎзМУ, доцент Жумаев Ж. БухДУ, доцент Болтаев Т.Б. БухДУ, доцент Эшанқулов Х.И. БухДУ, т.ф.д. Жалолов О.И. БухДУ, доцент Сайидова Н.С. БухДУ, доцент БухДУ, доцент Расулов Т.Х

КОНФЕРЕНЦИЯ КОТИБЛАРИ

Атамурадов Ж.Ж., Эргашев А.А. Қосимов Ф.Ф., Ҳазратов Ф.Ҳ., Зарипов Н.Н., Ибрагимов С.И., Назаров Ш.Э.

Тўплам Ўзбекистон Республикаси Вазирлар Маҳкамасининг 2021 йил 2 мартдаги 78-ф-сонли фармоиши билан тасдиқланган Ўзбекистон Республикасида 2021 йилда халқаро ва республика миқёсидаги ўтказиладиган илмий ва илмий-техник тадбирлар режасида белгиланган тадбирларнинг бажарилиши мақсадида 2021 йил 15 апрель куни Бухоро давлат университети Ахборот технологиялари факультетида "Амалий математика ва ахборот технологияларининг замонавий муаммолари" мавзусидаги халқаро илмий-амали анжуман материаллари асосида тузилди.

Масъул мухаррир: О.И.Жалолов, доцент

Такризчилар:

Ж.Жумаев, доцент

Bu verda,

k – chumoli, i, j – grafik tepaliklar, t – takrorlashlar soni.

FOYDALANILGAN ADABIYOTLAR

- 1. Стандарт, ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования
- 2. Стандарт, ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования
- 3. Авдошин С.М, Криптоанализ: современное состояние и перспективы развития, / С.М.Авдошин, А.А.Савельева// 2007, № S3, с.1-32, журнал «Информационные технологии» изд-во «новые технологии».
- 4. Чернышев Ю.О., Сергеев А.С., Рязанов А.Н., Капустин С.А. Разработка и параллельного алгоритма муравьиных исследование криптоанализа документ] блочных [Электронный Программные систем. продукты системы. 2015. № (112).C. 148-157. (https://elibrary.ru/item.asp?id=25321877). Проверено 30.05.2017

ПОРОГОВЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЕ И РЕЗОНАНСЫ МОДЕЛИ ФРИДРИХСА С ДВУМЕРНЫМ ВОЗМУЩЕНИЕМ Бахронов Б.И.

рахронов р.и.

Бухарский государственный университет

Обозначим через $T^3 \coloneqq (-\pi;\pi]^3$ - трехмерный тор, а через $L_2(T^3)$ гильбертово пространство квадратично-интегрируемых (комплексно-значных) функций, определенных на T^3 .

Рассмотрим модель Фридрихса H , действующий в гильбертовом пространстве $L_2(T^3)$ по формуле

$$H := H_0 - V_1 + V_2$$

где операторы H_0 и V_{α} , $\alpha = 1,2$ определяются по формулам:

$$(H_0 f)(p) = u(p) f(p), \ (V_{\alpha} f)(p) = \mu_{\alpha} v_{\alpha}(p) \int_{T^3} v_{\alpha}(t) f(t) dt, \ \alpha = 1, 2.$$

Здесь $u(\cdot)$ и $\upsilon_i(\cdot)$, i=1,2 -вещественнозначные, непрерывные функции на T^3 . Легко можно проверить, что при таких предположениях оператор H , действующий в гильбертовом пространстве $L_2(T^3)$, является ограниченным и самосопряженным.

Из известной теоремы Γ . Вейля о сохранении существенного спектра при возмущениях конечного ранга вытекает, что существенный спектр $\sigma_{ess}(H)$ оператора H совпадает с существенным спектром оператора H_0 . Известно, что

$$\sigma(H_0) = \sigma_{ess}(H_0) = [E_1; E_2],$$

где числа $E_{\scriptscriptstyle 1}$ и $E_{\scriptscriptstyle 2}$ определяются по равенствам

$$E_1 := \min_{p \in T^d} u(p), \qquad E_2 := \max_{p \in T^d} u(p).$$

Из последних двух фактов следует, что $\sigma_{ess}(H) = [E_1; E_2]$.

Пусть C - комплексная плоскость. При каждом μ_{α} , $\alpha = 1,2$ определим регулярную в $C \setminus [E_1; E_2]$ функцию

$$\Delta(\mu_1, \mu_2, z) := \Delta_1(\mu_1, z) \Delta_2(\mu_2, z) + \mu_1 \mu_2(\Delta_3(z))^2$$

(определитель Фредгольма, ассоциированный с оператором H), где

$$\Delta_{\alpha}(\mu_{\alpha}, z) := 1 + (-1)^{\alpha} \mu_{\alpha} \int_{T^{d}} \frac{\upsilon_{\alpha}^{2}(t)dt}{u(t) - z}, \quad \alpha = 1, 2, \quad \Delta_{3}(z) := \int_{T^{d}} \frac{\upsilon_{1}(t)\upsilon_{2}(t)dt}{u(t) - z}.$$

Установим связь между собственными значениями оператора H и нулями функции $\Delta(\mu_1\mu_2,\cdot)$. Верна следующая

Лемма 1. Число $z(\mu_1,\mu_2)\in C\setminus \sigma_{ess}(H)$ является собственным значением оператора H тогда и только тогда, когда $\Delta(\mu_1,\mu_2,z(\mu_1,\mu_2))=0$.

Из леммы 1 следует, что

$$\sigma_{disc}(H) = \{z \in C \setminus [E_1; E_2] : \Delta(\mu_1, \mu_2, z) = 0\}.$$

Таким образом для спектра $\sigma(H)$ оператора H имеет место равенство

$$\sigma(H) = [E_1; E_2] \cup \{z \in C \setminus [E_1; E_2] : \Delta(\mu_1, \mu_2, z) = 0\}.$$

Для формулировки основного результата работы наряду с оператором H рассмотрим также ограниченный и самосопряженный оператор H_{α} , $\alpha=1,2$, действующий в гильбертовом пространстве $L_{\gamma}(T^d)$ по формулам

$$H_1 \coloneqq H_0 - V_1 \bowtie H_2 \coloneqq H_0 + V_2$$
.

Следует отметит, что функция $\Delta_{\alpha}(\mu_{\alpha},z)$ является определителом Фредгольма, ассоциированный с оператором H_{α} и

$$\sigma_{disc}(H_{\alpha}) = \{z \in C \setminus [E_1; E_2] : \Delta_{\alpha}(\mu_{\alpha}, z) = 0\},$$

$$\sigma(H_{\alpha}) = [E_1; E_2] \cup \{z \in C \setminus [E_1; E_2] : \Delta_{\alpha}(\mu_{\alpha}, z) = 0\}.$$

Предположим, что функция $u(\cdot)$ имеет единственный невырожденный минимум в точке $p_1 \in T^3$ и единственный невырожденный максимум в точке $p_2 \in T^3$. Более, того функция $\mathcal{U}_{\alpha}(\cdot)$ имеет непрерывные частные производные до третьего порядка в окрестности точки $p_{\alpha} \in T^3$.

Для дальнейших исследований всюду предположим, что имеет место условие $mes(\sup\{\upsilon_1(\cdot)\} \cap \sup\{\upsilon_2(\cdot)\}) = 0.$

Далее, где не оговорено противное, всюду в работе предполагается, что число α принимает значения 1 и 2.

Пусть $C(T^3)$ (соот. $L_1(T^3)$) — банахово пространство непрерывных (соот. интегрируемых) функций, определенных на T^3 .

Определение 1. Говорят, что оператор H имеет виртуальный уровень в точке $z=E_{\alpha}$ (резонанс c энергией E_{α}), если число 1 является собственным значением оператора

$$(G_{\alpha}\psi_{\alpha})(p) = \int_{T^{3}} \frac{\mu_{1}\upsilon_{1}(p)\upsilon_{1}(t) - \mu_{2}\upsilon_{2}(p)\upsilon_{2}(t)}{u(t) - E_{\alpha}}\psi_{\alpha}(t)dt, \quad \psi \in C(T^{3})$$

и по крайней мере одна (с точностью до константы) соответствующая собственная функция ψ_{α} удовлетворяет условию $\psi_{\alpha}(p_{\alpha}) \neq 0$.

Заметим, что если оператор H имеет виртуальный уровень в точке $z=E_{\alpha}$, тогда решение уравнения $G_{\alpha}\psi_{\alpha}=\psi_{\alpha}$ равно (с точностью до константы) функции $\upsilon_{\alpha}(\cdot)$. Отметим, что в определении 1 требование наличия собственного значения 1 оператора G_{α} соответствует существованию решения уравнения $H\!f_{\alpha}=E_{\alpha}f_{\alpha}$, а из условия

 $\psi_{\alpha}(p_{\alpha}) \neq 0$ следует, что решение f_{α} этого уравнения не принадлежит пространству $L_2(T^3)$. Точнее, если оператор H имеет виртуальный уровень в точке $z=E_{\alpha}$, то функция

$$f_{\alpha}(p) = (-1)^{\alpha+1} \frac{\upsilon_{\alpha}(p)}{u(p) - E_{\alpha}},\tag{1}$$

удовлетворяет уравнению $H\!f_{\alpha}=E_{\alpha}f_{\alpha}$ и $f_{\alpha}\in L_{\rm l}(T^3)\setminus L_2(T^3)$.

Если число $z=E_{\alpha}$ является собственным значением оператора H , то функция f_{α} , определенный по формуле (1), удовлетворяет уравнению $H\!f_{\alpha}=E_{\alpha}f_{\alpha}$ и $f_{\alpha}\in L_2(T^3)$.

Положим

$$I_{\alpha}(z) := \int_{T^d} \frac{\upsilon_{\alpha}^2(t)dt}{u(t)-z}, \quad z \in R \setminus [E_1; E_2].$$

Так как функции $I_{\alpha}(\cdot)$ являются монотонно возрастающий на полуосях $(-\infty; E_1)$ и $(E_2; +\infty)$, из теоремы о предельном переходе под знаком интеграла Лебега следует, что существуют (конечные или бесконечные) пределы

$$I_1(E_1) = \lim_{z \to E_1 \to 0} I_1(z), \quad I_2(E_2) = \lim_{z \to E_2 \to 0} I_2(z).$$

В случаи
$$|I_{\alpha}(E_{\alpha})| < +\infty$$
 положим $\mu_1^0 := (I_1(E_1))^{-1}, \ \mu_2^0 := -(I_2(E_2))^{-1}.$

Следующая теорема о необходимых и достаточных условиях для того чтобы, либо число $z=E_{\alpha}$ являлось собственным значением оператора H , либо оператор H имел виртуальный уровень в точке $z=E_{\alpha}$.

Теорема 1. А) Число $z=E_{\alpha}$ является собственным значением оператора H тогда и только тогда, когда $\mu=\mu_{\alpha}^{0}$ и $\upsilon_{\alpha}(p_{\alpha})=0.$

Б) Оператор H имеет виртуальный уровень в точке $z=E_{\alpha}$ тогда и только тогда, когда $\mu=\mu_{\alpha}^{0}$ и $U_{\alpha}(p_{\alpha})\neq0$.

Теорема 1 играет важную роль при исследовании существенного и дискретного спектра соответствующего трехчастичного модельного оператора на решетке. Аналогичный результат получен для обобщенной модели Фридрихса в работах [1, 2].

Литературы

- 1. Rasulov T.H., Dilmurodov E.B. Eigenvalues and virtual levels of a family of 2x2 operator matrices // Methods Func. Anal. Topology, 25:1 (2019), pp. 273-281.
- 2. Rasulov T.H., Dilmurodov E.B. Threshold analysis for a family of 2x2 operator matrices // Nanosystems: Phys., Chem., Math., 10:6 (2019), pp. 616-622.

MODULATED MAGNETIC STRUCTURES AND MODELS OF THEIR THEORETICAL EXPRESSION

Yuldasheva Nilufar Bakhtiyorovna

Lecturer of Department of Physics Bukhara State University

Abstract – This paper is devoted to study of physical processes occurring in weak ferromagnetics iron - borate doped diamagnetic magnesium under external influence.

Key words: Modulated magnetic structure, linear magnetic tourefracting rays domain structure.

In today's world, where the division of physics into many disciplines is taking place, the ideas and ideas that generalize the different branches of physics play an important role. Such

Hayotov A.R., Abdullaev A.Q. The problem on construction of optimal trigonometric	
interpolation formula in $W_{2,\alpha}^{(2,0)}(0,1)$ space	237
Hayotov A.R., Azatov F.H. On an optimal quadrature formula with derivative for approximation of fourier integrals in the space	. 238
	236
Худаяров С.С. Решение квадратически стохастически процесс типа $(13 a)$	239
Мирзоев А.А., Хамдамов М.М. Ўққа нисбатан симметрик турбулент харакатда пропаннинг йўлдош оқимда тарқалиши ва чекли тезликда ёниши	241
Алимова Н.Б., Паровик Р.И. Математическое моделирование процесса переноса радона	
в трехслойной геосреде	244
Xo'jayev I.Q., Ravshanov Sh.A. Quyosh radiatsiyasi intensivligining matematik modeli va hisoblash algoritmi	245
Akhmadaliev G.N. Calculation of the coefficients of optimal quadrature formulas in space	
$K_{2,\omega}(P_2)$	248
Асракулова Д.С., Жўрабоева О.С. Диффузионная логистическая модель для	210
прогнозирования аспространение информации в онлайновых социальных сетях	249
Боборахимова М.И. Популяционная модель в речной сети	
Рахманов Ш.Р., Донобоев Ж.Ж., Тураев Т.К. Математическое моделирование и	
управление технологическими процессами микробиологического синтеза	252
Рахманов Ш.Р., Донобоев Ж.Ж., Тураев Т.К. Разработка алгоритмов прогнозирования	
протекания технологического процесса культивирования микроводорослей	256
Ахмедов Д.М., Носирова Н.А. Оптимизация методов для вычисления весовых	250
сингулярных интегралов типа коши	258
Рахманов III.Р., Умаров С.А. Реализация моделей и алгоритмов в задачах управления	230
	260
процессом культивирования хлореллы	200
	262
восстановления источника для уравнения вихря	
Mamatova N.X., Xazratov Sh.Sh. Parabolik tipdagi tenglamalarni taqribiy yechish usuli	265
Djalilov A.A. Jamoat tanlovining matematik modellari va ularning jamiyatda qollash	267
muammolari.	267
Эсанов Ш. Существование и единственность максимизирующего элемента функционала	2.60
погрешности в пространстве $H_2^{(m)}(0,1)$.	269
ІІ ШЎЪБА. ЗАМОНОВИЙ АНАЛИЗ ВА УНИНГ ТАДБИКЛАРИ	
Nurjanov J. Sh., Abduxamidov T.A. Kriptotahlilda tabiiy algoritmlarnig samaradorligini tadqiq qilish	271
Бахронов Б.И. Пороговые собственные значение и резонансы модели фридрихса с	
двумерным возмущением	272
Yuldasheva N.B. Modulated magnetic structures and models of their theoretical expression	
Тошева Н.А. Уравнения вайнберга для собственных вектор-функций семейства 3х3-	
операторных матриц	276
Ахмедов О.С. Айрим вольтерра бўлмаган динамик тизимларнинг қўзғалмас нуқталари	2,0
хакида	277
Расулов Т.Х. О вложенных собственных значений решетчатой модели спин-бозон с не	_,,
более чем одного фотона	278
Mukhitdinov R. Т., Abdullayeva M.A. Dynamics of convex combination of non-volterra	270
quadraticstochastic operators	281
Мустафоев Н.С. Асимптотические оценки для гауссовских интегралов	. 282
Ибодова С. Бир ўлчамли қўзғалишга эга фридрихс моделининг спектри ва сонли тасвири	202
ҳақида	403

Khayitova Kh.G. Spectrum of the friedrichs model with rank 3 perturbation	
ІІІ ШЎЪБА.ИНТЕЛЕКТУАЛ ТИЗИМЛАР	
Сайманов И.М., Ашуров С. Безопасность в технологии интернет вещей	291
Fayziyev Sh.I., Nabiyev D.P. Berilgan trayektoriya bo'yicha robotning avnonom harakatini boshqarish	202
Эшанкулов Х.И., Салимова М.Н. Методы и подходы к системной интеграции	
Салимова M.H. Axborot tizimlarini integratsiyalash usullari	296
Эшанкулов Х.И., Тошбоева Г.У. Этапы развития информационной системы методы и подходы к системной моделирование	
Toshboyeva G.O`. BPMN modellashtirish usuli orqali axborot tizimlarining biznes jarayonlarin axborot modelini qurish	
Toirov Sh.A., I.M. Boynazarov, O. Rajabov. Kvant hisoblash va kvant evolyutsiya algoritmlari	302
Xayriyev F.N. Dasturiy ta'minot yaratishda agile yondashuvi	
Бекмуродов У.Б. Интеллектуал мулокот тизимлари ва ўзига хос хусусиятлари	1
робота	
нейронной сети в управлении дорожным движением	
systems in disaster robotics	
Зарипов Ф.М., Юлдашев Қ.Р. Коллаборатив фильтрацияга асосланган тавсия берувчи	
TU3UM	
Djurayev O.N. Nutq belgilarini ajratib olish usullari tahlili	320
· ·	.322
Nosirov Kh.Kh., Begmatov Sh.A., Arabboyev M.M. A survey on e-health and medical iot development platform (case study for mysignals)	. 325
Muhammadiyev I.M. Signallarga raqamli ishlov berishda diskretizatsiyadan foydalanish	327
Эргашев О.М. Ранжировка и анализ структур очистки производственных сточных вод Зарипов Ф.М., Юлдашев Қ.Р. Коллаборатив фильтрацияга асосланган тавсия берувчи	
тизим	
Jo`rayev Z.Sh., Xo`jayev O`.U., Jo`rayeva L.I. Uniwork tizimida shaxs identifikasiyasi	
Jo`rayev Z.Sh., Uniwork shartnoma to`lovlarini avtomatlashtirish	
Мамиров У.Ф. Адаптивная система управления с многослойной нейронной сетью в	5 12
условиях неопределенности	. 344
Мамиров У.Ф. Алгоритмы синтеза параметрически инвариантных систем управления в	246
условиях вариации матрицы состояния объекта	