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Structure of the numerical range of a Friedrichs model:
1D case with rank two perturbation

Rasulov T. H. 1 Bahronov B. I. 2

Frisrixs modeli sonli tasvirining tuzilishi: rangi ikkiga teng
qo’zg’alishli 1 o’lchamli hol
Ushbu maqolada chegaralangan va o’z-o’ziga qo’shma A(µ1, µ2),
µ1, µ2 > 0 Fridrixs modeli qaraladi va rangi ikkiga teng
qo’zg’alishli 1 o’lchamli hol tahlil qilinadi. Odatda bunday
modellar 1 o’lchamli panjaradagi ikkita kvant zarrachalar
sistemasiga mos keladi. A(µ1, µ2) operatorning sonli tasviri
µ1 va µ2 parametrlarda nisbatan tadqiq qilinadi. µα, α =
1, 2 parametrlarning A(µ1, µ2) operator spektri va sonli tasviri
ustma-ust tushishini ta’minlaydigan kritik qiymati topiladi.
Kalit so’zlar: Fridrixs modeli; qo’zg’alish; kvant zarrachalar;
lokal bo’lmagan ta’sirlashish operatori; sonli tasvir; spektral
munosabat; xos qiymat.

Структура числовой области значений модели Фридрихса:
одномерный случай с двумерным возмущением
В настоящей статьи рассматривается ограниченная и само-
сопряженная модель Фридрихса A(µ1, µ2), µ1, µ2 > 0 и об-
суждается одномерный случай с двумерным возмущением.
Обычно такие модели ассоциированы с системой двух кван-
товых частиц в одномерной решетке. Исследуется числовая
область значения оператора A(µ1, µ2) относительно парамет-
ров µ1 и µ2. Найдем критическое значение параметра µα,
α = 1, 2 гарантирующий совпадаемость спектра и числовой
области значений оператора A(µ1, µ2).
Ключевые слова: модель Фридрихса; возмущения; кванто-
вые частицы; нелокальный оператор взаимодействия; число-
вой область значения; спектральное включение; собственное
значение.
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The numerical range and its useful properties

The numerical range is an important tool in the spectral analysis of bounded and unbounded linear operators
in Hilbert spaces. For the reader’s convenience, we begin by collecting some of its useful properties (see e.g.
[1, 2]). Let H be a complex Hilbert space and let T be a bounded linear operator in H. Then the numerical
range of T is the set

W (T ) := {(Tx, x) : x ∈ H, ‖x‖ = 1},
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where (·, ·) and ‖ · ‖ are the inner product and norm on Hilbert space H, respectively. Thus the numerical range
of an T , like the spectrum, is a subset of the complex plane whose geometrical properties should say something
about that operator. This notion was first studied by O.Toeplitz in [3]; he proved that the numerical range of
a matrix contains all its eigenvalues and that its boundary is a convex curve. In [4] F.Hausdorff showed that
indeed the set W (T ) is convex. In fact, it turned out that this continues to hold for general bounded linear
operators and that the spectrum is contained in the closure W (T ) (see [5]).

For α ∈ C and Ω ⊂ C we set

αΩ := {αz : z ∈ Ω}, α+ Ω := {α+ z : z ∈ Ω}.

In the following we formulate some properties of W (T ) which are immediate. For a bounded linear operator
T on a Hilbert space H:

(i) W (T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖};
(ii) W (T ∗) = {λ : λ ∈W (T )};
(iii) W (I) = {1}, where I is an identity operator on H. More generally, if α and β are complex numbers,

then W (αT + β) = αW (T ) + β;
(iv) If T = T ∗, then W (T ) ⊂ R;
(v) If dimH <∞, then W (T ) is compact;
(vi) If S, T : H → H are unitarily equivalent, then W (S) = W (T );
(vii) The numerical range W (T ) of T satisfies the so-called spectral inclusion property

W (T ) ⊂ σp(T ), W (T ) ⊂ σ(T )

for the point spectrum σp(T ) (or set of eigenvalues) and the spectrum σ(T ) of T .
The notion of numerical range is generalized by the different ways, see for example [6, 7, 8, 9, 10]. One

important use of W (T ) is to bound the spectrum σ(T ). The spectrum of an operator T consists of those
complex numbers λ such that T − λI is not invertible. For our purpose the spectrum of an operator is equal to
its numerical range for some case, it is enough to look at the boundary of the spectrum.

It is well known that the boundary of the spectrum is contained in the approximate point spectrum σapp(T )
(see [2]), which consists of complex numbers λ for which there exists a sequence of unit vectors {fn} with

‖(T − λI)fn‖ → 0

as n→∞.
The following example shows that even for the bounded self-adjoint operator B in Hilbert space H we can

not state σ(B) ⊂W (B) or W (B) ⊂ σ(B). Let

B : l2 → l2, Bx = (x1,
1

2
x2, . . . ,

1

n
xn, . . .), x = (x1, x2, . . . , xn, . . .) ∈ l2.

It is easy to see that

σ(B) =
{

1,
1

2
, . . . ,

1

n
, . . .

}
=
{

0, 1,
1

2
, . . . ,

1

n
, . . .

}
, W (B) = (0, 1].

Here 0 6∈W (B), since the equality

(Bx, x) =

∞∑
k=1

1

n
|xn|2 = 0

implies x = (0, 0, ...) ∈ l2. Then a natural question arises: Is there a bounded self-adjoint operator, which is
differently from scalar, that its spectrum coincide with the numerical range? In this paper, we will try to answer
to this question and give an example for such type operators.

In the present paper we consider a Hamiltonian (Friedrichs model) A(µ1, µ2) with rank two perturbation.
This Hamiltonian is associated with a system of two quantum particles on a one-dimensional lattice. We study
the numerical range of A(µ1, µ2) dependently on µα, α = 1, 2. In particular, we find the critical value of µα,
α = 1, 2 under which the spectrum of A(µ1, µ2) coincides with its numerical range W (A(µ1, µ2)). In [11] the
structure of the closure of numerical range of a 2 × 2 operator matrix, associated with a system of at most
two quantum particles on d− dimensional lattice, was investigated in detail by terms of matrix entries for all
dimensions of the torus Td. Some properties of the generalized Friedrichs model related with the numerical
range was studied in [12]. Formula for the quadratic numerical range of the generalized Friedrichs model was
obtained in [13].
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Essential and discrete spectrum of a Friedrichs model
In this section we introduce a Friedrichs model A(µ1, µ2) and we state the assumptions which will be needed
throughout the paper. Then we analyze the essential spectrum and discrete spectrum of A(µ1, µ2).

Let T1 be the one-dimensional torus and L2(T1) be the Hilbert space of square integrable (complex) functions
defined on T1. We consider the bounded and self-adjoint Friedrichs model A(µ1, µ2) acting on the Hilbert space
L2(T1) as

A(µ1, µ2) := A0 − µ1V1 + µ2V2,

where A0 is the multiplication operator by the function u(·) :

(A0f)(x) = u(x)f(x),

and Vα, α = 1, 2 are non-local interaction operators:

(Vαf)(x) = vα(x)

∫
T1

vα(t)f(t)dt, α = 1, 2.

Here f ∈ L2(T1); µα > 0, α = 1, 2 are positive reals, u(·) and vα(·), α = 1, 2 are real-valued continuous functions
on T1.

Throughout this paper, we assume that the function u(·) has an unique minimum at the point x1 ∈ T1 and
has an unique maximum at the point x2 ∈ T1, and for α = 1, 2 the function vα(·) has the continuous partial
derivatives up to the third-order inclusive at some neighborhood of xα ∈ T1. From now on we suppose that

mes(supp{v1(·)} ∩ supp{v2(·)}) = 0, (1)

where mes(·) is the Lebesgue measure on R and supp{vα(·)}) is the support of the function vα(·).
The following example shows that the class of functions u(·) and vα(·), α = 1, 2 satisfying above mentioned

conditions is nonempty. To prove this fact we introduce the functions of the form:

u(x) = 1− cosx,

v1(x) =

{
sin(2x), x ∈ (−π/2, π/2)

0, othervice ; (2)

v2(x) = sin(2x)− v1(x), x ∈ T1.

Then it is easy to check that for the function u(·) the points x1 = 0 and x2 = π are extremal points. For α = 1, 2
the function vα(·) is an analytic in the δ < π/2-neighborhood

Uδ(xα) := {x ∈ T1 : |x− xα| < δ}

of the point xα. Validness of the condition (1) follows from the construction of vα(·).
By the definition the perturbation −µ1V1 + µ2V2 of the operator A0 is a self-adjoint operator of rank two.

Therefore, in accordance with the Weyl theorem about the invariance of the essential spectrum under the finite
rank perturbations, the essential spectrum of the operator A(µ1, µ2) coincides with the spectrum of A0:

σess(A(µ1, µ2)) = σ(A0) = [m1;m2],

where the numbers m1 and m2 are defined by

m1 := min
x∈T1

u(x), m2 := max
x∈T1

u(x).

In order to study the spectral properties of the operator A(µ1, µ2), we introduce the following two bounded
self-adjoint operators (Friedrichs model with rank one perturbation) Aα(µα), acting on L2(T1) by the rule

Aα(µα) := A0 + (−1)αµαVα, α = 1, 2. (3)

Let C be the field of complex numbers. We define an analytic function ∆α(µα; ·) (the Fredholm determinant
associated with the operator Aα(µα)) in C \ [m1;m2] by

∆α(µα; z) := 1 + (−1)αµα

∫
T1

v2α(t)dt

u(t)− z
.
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Then the Birman-Schwinger principle and the Fredholm theorem imply that [14, 15] the operator Aα(µα) has
an eigenvalue zα ∈ C\ [m1;m2] if and only if ∆α(µα; zα) = 0. From here it follows that for the discrete spectrum
of Aα(µα) the equality

σdisc(Aα(µα) = {z ∈ C \ [m1;m2] : ∆α(µα; z) = 0} (4)

holds.
The following lemma establishes a connection between of eigenvalues of A(µ1, µ2) and Aα(µα), α = 1, 2.
Lemma. The number z ∈ C \ [m1;m2] is an eigenvalue of A(µ1, µ2) if and only if z is an eigenvalue one

of the operators Aα(µα), α = 1, 2.

Proof. Let the number z ∈ C \ [m1;m2] be an eigenvalue of A(µ1, µ2) and f ∈ L2(T1) be the corresponding
eigenfunction. Then f satisfy the equation

(u(x)− z)f(x)− µ1v1(x)

∫
T1

v1(t)f(t)dt+ µ2v2(x)

∫
T1

v2(t)f(t)dt = 0. (5)

It is easy to see that for any z ∈ C \ [m1;m2] the relation u(x)− z 6= 0 holds for all x ∈ T1. Then the equation
(5) implies

f(x) =
µ1v1(x)C1 − µ2v2(x)C2

u(x)− z
, (6)

where
Cα :=

∫
T1

vα(t)f(t)dt, α = 1, 2. (7)

Substituting the expression (6) for f into (7) and using the condition (1) we conclude that the equation (5)
has a nonzero solution if and only if the system of equations

∆α(µα; z)Cα = 0, α = 1, 2

has a nonzero solution, i.e., if the condition ∆1(µ1; z)∆2(µ2; z) = 0 holds. If we set vα(x) ≡ 0, then by the
definitions of A(µ1, µ2) and Aα(µα) we obtain that A(µ1, µ2) = Aβ(µβ) for α 6= β. Now the equality (1)
completes the proof. 2

By Lemma, the discrete spectrum of A(µ1, µ2) and Aα(µα), α = 1, 2 are connected by the equality

σdisc(A(µ1, µ2)) = σdisc(A1(µ1)) ∪ σdisc(A2(µ2)).

We note that the operators Aα(µα), α = 1, 2 have a structure simpler than that of A(µ1, µ2), and therefore,
the latter equality plays an important role in futher investigating the spectrum and numerical range of A(µ1, µ2).

Analysis of the numerical range of A(µ1, µ2)

In this section we investigate the numerical range of A(µ1, µ2) with respect to the parameters µ1 and µ2. Our
approach is based on the so-called threshold analysis method [14, 15].

Henceforth, we shall denote by C1, C2, C3 > 0 and δ > 0 different positive numbers.
We note that if vα(xα) = 0, then from the condition on vα(·) it follows that there exist positive numbers

C1, C2 and δ such that the inequalities

C1|x− xα|nα ≤ |vα(x)| ≤ C2|x− xα|nα , x ∈ Uδ(xα) (8)

hold for some nα ∈ N. For example, if the function vα(·) is defined by (2), then nα = 1 for α = 1. Since the
function u(·) has an unique minimum at the point x1 and an unique maximum at the point x2 there exist
C1, C2 > 0 and δ > 0 such that

C1|x− xα|2 ≤ |u(x)−mα| ≤ C2|x− xα|2, x ∈ Uδ(xα); (9)

|u(x)−mα| ≥ C1, x 6∈ Uδ(xα). (10)

Hence, if vα(xα) = 0, then using the inequalities (8), (9) and (10) one can easily seen that the integral∫
T1

v2α(t)dt

|u(t)−mα|
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is positive and finite. In this case we set

µ0
α := (−1)α+1

(∫
T1

v2α(t)dt

u(t)−mα

)−1
, α = 1, 2.

For α = 1, 2 we denote by E(α)
µα an eigenvalue of Aα(µα) (if exists).

Main result of the paper is the following theorem.
Theorem. (A) Let v1(x1) = 0 and v2(x2) = 0. Then

(A1) W (A(µ1, µ2)) = [m1,m2], if µα ∈ (0, µ0
α], α = 1, 2; moreover, mα ∈W (A(µ1, µ2)), if µα = µ0

α and nα ≥ 2
in (7);
(A2) W (A(µ1, µ2)) = [E

(1)
µ1 , E

(2)
µ2 ] with E(1)

µ1 < m1 and E(2)
µ2 > m2, if µα > µ0

α, α = 1, 2;
(B) Suppose v1(x1) 6= 0 and v2(x2) 6= 0. Then for any µα > 0, α = 1, 2 we have

W (A(µ1, µ2)) = [E(1)
µ1
, E(2)

µ2
],

where E(1)
µ1 < m1 and E(2)

µ2 > m2.

Proof. (A) Assume v1(x1) = 0 and v2(x2) = 0. First we discuss the case µα ∈ (0, µ0
α] for α = 1, 2. Then from

monotonicity property of ∆α(µα; z) by µα and z, and also from the definition of µ0
α we get

∆1(µ1; z) ≥ ∆1(µ0
1; z) > ∆1(µ0

1; m1) = 0 for z < m1;

∆2(µ2; z) ≤ ∆2(µ0
2; z) < ∆2(µ0

2; m2) = 0 for z > m2.

The latter two assertions means that the operator A1(µ1) (resp. A2(µ2)) has no eigenvalues lying in (−∞,m1)
(resp. (m2,+∞)).

From the positivity of the operator V1 it follows easily that the assertions

((A1(µ1)− z)g, g) =

∫
T1

(u(t)− z)|g(t)|2dt− µ1(V1g, g) < 0

hold for any µ1 > 0, z > m2 and g ∈ L2(T1). In the same manner one can see that the assertions

((A2(µ2)− z)g, g) =

∫
T1

(u(t)− z)|g(t)|2dt+ µ2(V2g, g) > 0

hold for any µ2 > 0, z < m1 and g ∈ L2(T1). Then it is obvious that for all µ2 > 0 the operator A2(µ2) has
no eigenvalues lying on the l.h.s. of m1 and for all µ1 > 0 the operator A1(µ1) has no eigenvalues lying on the
r.h.s. of m2. Hence, the equality (4) and Lemma imply that the operator A(µ1, µ2) has no eigenvalues outside
of [m1,m2]. Therefore,

σ(A(µ1, µ2)) = σess(A(µ1, µ2)) = [m1;m2]

for all µα ∈ (0, µ0
α], α = 1, 2. Since A(µ1, µ2) is a bounded and self-adjoint, by the convexity of the numerical

range we have W (A(µ1, µ2)) = [m1,m2].
Now let us consider the case µα = µ0

α and nα ≥ 2 in (8) for α ∈ {1, 2}. We introduce the function of the
form

fα(x) = (−1)α+1 µ0
αvα(x)

u(x)−mα
(11)

and show that this function satisfies the equation A(µ0
1, µ

0
2)fα = mαfα:

(A(µ0
1, µ

0
2)−mα)fα(x) = (u(x)−mα)(−1)α+1 µ0

αvα(x)

u(x)−mα

− µ0
1v1(x)(−1)α+1µ0

α

∫
T1

v1(t)vα(t)dt

u(t)−mα

+ µ0
2v2(x)(−1)α+1µ0

α

∫
T1

v2(t)vα(t)dt

u(t)−mα
.

Using the assumption (1) and definition of µ0
α we obtain

(A(µ0
1, µ

0
2)−mα)fα(x) = (−1)α+1µ0

αvα(x)

[
1 + (−1)αµ0

α

∫
T1

v2α(t)dt

u(t)−mα

]
= 0, α = 1, 2.
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Next we prove that fα ∈ L2(T1). By the additivity property of the integral we have∫
T1

|fα(t)|2dt = (µ0
α)2
∫
Uδ(xα)

v2α(t)dt

(u(t)−mα)2
+ (µ0

α)2
∫
T1\Uδ(xα)

v2α(t)dt

(u(t)−mα)2
. (12)

Then by (8) and (9) for the first summand on the right-hand side of (12) we obtain∫
Uδ(xα)

v2α(t)dt

(u(t)−mα)2
≤ C1

∫
Uδ(xα)

|t− xα|2nαdt

|t− xα|4
.

The finiteness of the latter integral follows from the condition nα ≥ 2.
It follows from the continuity of the function vα(·) on the compact set T1 and (10) that∫

T1\Uδ(xα)

v2α(t)dt

(u(t)−mα)2
≤ C1

∫
T1\Uδ(xα)

dt < +∞.

So,fα ∈ L2(T1). Therefore, mα ∈W (A(µ0
1, µ

0
2)) for α = 1, 2, that is,

W (A(µ0
1, µ

0
2)) = [m1;m2]

under the assumption nα ≥ 2 in (8).
If µα > µ0

α for α = 1, 2, then it is evident that

∆1(µ1; m1) < ∆1(µ0
1; m1) = 0, ∆2(µ2; m2) > ∆2(µ0

2; m2) = 0.

Taking into account the last two facts and the equalities

lim
z→−∞

∆1(µ1; z) = +∞, lim
z→+∞

∆2(µ2; z) = −∞,

we conclude that there exist the points E(1)
µ1 ∈ (−∞,m1) and E(2)

µ2 ∈ (m1,+∞) such that ∆1(µ1; E
(1)
µ1 ) = 0 and

∆2(µ2; E
(2)
µ2 ) = 0. By the equality (4) it means that the numbers E(1)

µ1 and E(2)
µ2 are the eigenvalues of A1(µ1)

and A2(µ2), respectively, and hence, by Lemma they are eigenvalues of A(µ1, µ2). We denote by fα ∈ L2(T1)
the corresponding eigenfunction with ‖fα‖ = 1. Then

E(α)
µα

= (A(µ1, µ2)fα, fα),

that is, E(α)
µα ∈W (A(µ1, µ2)) for α = 1, 2. Now the equalities

E(1)
µ1

= min
‖f‖=1

(A(µ1, µ2)f, f), E(2)
µ2

= max
‖f‖=1

(A(µ1, µ2)f, f)

completes the proof of part (A) of Theorem.
(B) Let vα(xα) 6= 0, α = 1, 2. Since the function vα(·) is a continuous on a closed set T1, there exist positive

numbers C1 and δ such that
|vα(x)| ≥ C1, x ∈ Uδ(xα).

Then using the inequality (9) one can easily seen that the integral∫
T1

v2α(t)dt

|u(t)−mα|
≥ C1

∫
Uδ(xα)

dt

|t− xα|4
= +∞.

The Lebesgue dominated convergence theorem yields

lim
z→m1−0

∆1(µ1 ; z) = −∞, lim
z→m2+0

∆2(µ2 ; z) = +∞.

Now analysis similar to that in the proof of part (A2) of Theorem completes the proof of part (B). Theorem 1
is completely proved. 2

From Theorem it follows the following assertion.
Corollary. (A) If v1(x1) = 0 and v2(x2) 6= 0, then for any µ2 > 0 we have

(A1) W (A(µ1, µ2)) = [m1, E
(2)
µ2 ] with E(2)

µ2 > m2, if µ1 ∈ (0, µ0
1]; moreover, the claim m1 ∈W (A(µ1, µ2)) holds,



Rasulov T. H., Bahronov B. I. Structure of the numerical range of a Friedrichs model ... 7

if µ1 = µ0
1 and n1 ≥ 2 in (7);

(A2) W (A(µ1, µ2)) = [E
(1)
µ1 , E

(2)
µ2 ] with E(1)

µ1 < m1 and E(2)
µ2 > m2, if µ1 > µ0

1;
(B) If v1(x1) 6= 0 and v2(x2) = 0, then for any µ1 > 0 we have
(B1) W (A(µ1, µ2)) = [E

(1)
µ1 ,m2] with E(1)

µ1 < m1, if µ2 ∈ (0, µ0
2); moreover the claim m2 ∈W (A(µ1, µ2)) holds,

if µ2 = µ0
2 and n2 ≥ 2 in (7);

(B2) W (A(µ1, µ2)) = [E
(1)
µ1 , E

(2)
µ2 ] with E(1)

µ1 < m1 and E(2)
µ2 > m2, if µ2 > µ0

2.
We remark that at the first sight, the convexity of the numerical range seems to be useful property, e.g. to

show that the spectrum of an operator lies in a half plane. However, the numerical range often gives a poor
localization of the spectrum and it cannot capture finer structures such as the separation of the spectrum in
two or three parts. The spectrum of the Friedrichs model A(µ1, µ2) may consist of a union of one, two, or three
sets. The present paper is devoted to the study of numerical range in the case where the spectrum of A(µ1, µ2)
is a purely essential. Mainly we analyzed the problem of whether boundary points of the essential spectrum of
A(µ1, µ2) belong to its numerical range.
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