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Abstract. In the paper we consider a Friedrichs model A (µ1,µ2), µ1,µ2 > 0 with rank two perturbation. It is related with a two
quantum particle system on 3D integer lattice. The number and location of the discrete eigenvalues of A (µ1,µ2) are investigated.
We give the sufficient and necessary conditions which guarantees the equality of the spectrum of A (µ1,µ2) and its field of values
(or numerical range). The relation of the threshold eigenvalues and virtual levels with the numerical range of A (µ1,µ2) are
established.

INTRODUCTION

The field of values (or numerical range) is a key tool in the investigation of the spectra of the bounded or unbounded
linear operators acting in complex Hilbert spaces. Let us state its definition. Assume A is a linear bounded operator on
a Hilbert space Y . Denote by (·, ·) the scalar product on the complex Hilbert space Y . For the operator A we determine
the image of the unit sphere of Y under the quadratic form y → (Ay,y). We say this set the field of values (or numerical
range) of the operator A and use the notation W (A). Precisely speaking,

W (A) := {(Ay,y) : y ∈ Y, ∥y∥= 1}.

Therefore for the field of values W (A), like the spectrum, we have W (A) ⊂ C. The notion field of values was first
discussed in [1]; Toeplitz showed that the field of values of a usual matrix A is contain its spectrum, in addition the
boundary of W (A) is a convex curve. Convexity of the set W (A) was shown in [2]. Further, these properties are true
for general bounded linear operators, that is, the closure W (A) is contain the spectrum (see [3]).

The notion of field of values is generalized by the different ways, see for example [4, 5, 6, 7, 8, 9]. In particular, the
notions higher rank numerical range and tracial numerical range are among them. There are also concepts of quadratic
numerical range for second order operator matrices, cubic numerical range for third order operator matrices and block
numerical range for n-th order operator matrices. We remark that the numerical range of a linear operator allows to
determine the location of its smallest and largest eigenvalues.

In the present paper we discuss a Hamiltonian (Friedrichs model) A (µ1,µ2) with rank two perturbation. This
Hamiltonian is related with a two quantum particle system on 3D lattice. In the Section 2 we collect some useful
properties of the numerical range. In the Section 3 we investigate the position and number of the eigenvalues of
A (µ1,µ2). In our case the corresponding Fredholm’s determinant as a function is not monotonic. Therefore we use
the method, which is based on the number of discrete eigenvalues of Friedrichs model with rank one perturbation
to define the position of its discrete eigenvalues. In Section 4 we find sufficient and necessary conditions which
guaranties that the spectrum of A (µ1,µ2) is equal to the field of values.

Remark that the structure of the closure of the field of values of a 2× 2 operator matrix, related with a system of
at most two quantum particles on dD lattice, is investigated in detail in [10], with respect of matrix elements in any
dimensions d of Td.

SOME USEFUL PROPERTIES OF THE NUMERICAL RANGE

Now we list some useful properties of W (A) (for detailed information we refer [11, 12, 13]).
The set of all complex numbers will be denoted by C. Next we consider a bounded linear operator A on a complex

Hilbert space X .
(a) for the field of values W (A) of A we have the inclusion

W (A)⊂ {a ∈ C : |a| ≤ ||A||;
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(b) the assertion W (A∗) = {a : λ ∈ W (A)} is true for the adjoint operator A∗;
(c) For the field of values of an identity operator E on X the equality W (E) = {1} holds. Additionally, the equality

W (αA+β ) = αW (A)+β

is valid for an arbitrary complex quantities α and β ;
(d) From self-adjoint ness of A it follows that W (A)⊂ R;
(e) If dim(X)< ∞, then W (A) is a compact (closed and bounded) set;
(f) Under unitary similarity the field of values W (A) of A is an invariant;
(g) Let σp(A) be the point spectrum (or set of eigenvalues) and σ(A) be the spectrum of A. Then for the field of

values W (A) of A the spectral inclusion property:

W (A)⊂ σp(A) and W (A)⊂ σ(A)

are valid.
One special usage of W (A) is the study of the boundary of the spectrum σ(A). We determine the approximate point

spectrum σapp(A) by the equality (see [13])

σapp(A) := {a ∈ C : ∃{yn}∞
1 ⊂ D(A), (A−aE)yn → 0, asn → ∞, ∥yn∥= 1}

and it is well known that the spectrum’s boundary is contained in σapp(A).
The following example shows that even for the bounded linear operator C =C∗ in complex Hilbert space X we can

not state W (C)⊂ σ(C) or σ(C)⊂ W (C). Let

l2(N) := {y = (y1,y2, . . . ,yn, . . .) :
∞

∑
k=1

|yk|2 < ∞};

C : l2(N)→ l2(N), Cy = (y1,
1
2

y2, . . . ,
1
n

yn, . . .), y = (y1,y2, . . . ,yn, . . .) ∈ l2(N).

According to the simple calculations we get

σ(C) =
{1

n
: n ∈ N

}
=
{1

n
: n ∈ N

}
∪{0}, W (C) = (0,1].

Here 0 ̸∈ W (C), since the equality

(Cy,y) =
∞

∑
k=1

1
n
|yn|2 = 0

implies y= (0,0, ...)∈ l2(N). Then a natural question arises: Is there the differently from scalar a bounded self-adjoint
operator, that its spectrum equals to the field of values? In this paper, we will try to answer to this question and give
an example for such type operators.

FRIEDRICHS MODEL AND ITS SPECTRUM

By T3 we mean the 3D torus and by L2(T3) we mean the complex Hilbert space of square integrable (in general
complex valued) functions on 3D torus T3.

Let us consider the Hamiltonian (so-called the Friedrichs model) acting on L2(T3):

A (µ1,µ2) : L2(T3)→ L2(T3), A (µ1,µ2) = A0 −µ1V1 +µ2V2, (1)

where the operators A0 and Vα , α = 1,2 are defined by

(A0g)(x) = u(x)g(x), g ∈ L2(T3);
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(Vα g)(x) = vα(x)
∫

T3
vα(s)g(s)ds, α = 1,2, g ∈ L2(T3).

Here µα > 0, α = 1,2 are positive reals, the functions u(·) and vα(·), α = 1,2 are continuous on T3 with real-values.
Using simple discussions one can show the boundedness and self-adjointness of the operator A (µ1,µ2) in L2(T3)
defined by (1).

The Friedrichs model A (µ1,µ2) is related with a two particle system on a 3D lattice and interacting by the non-
local potentials. Usually such operators are arising in Hubbard model [14, 15]. In this paper we discuss the case
where the kernel of non-local interaction operators (integral operators) Vα , α = 1,2 has rank two. A key problem of
the spectral theory of such operators is to determine the field of values and to investigate the position and number of
discrete eigenvalues lying on the left and right hand side of the essential spectrum.

Let A be a bounded self-adjoint linear operator in a Hilbert space X . The essential spectrum of the operator A will
be denoted by σess(A), the discrete spectrum σdisc(A), the spectrum by σ(A) and the resolvent set by ρ(A).

We start to determine the sets σess(A (µ1,µ2)) and σdisc(A (µ1,µ2)).
By the definition of the perturbation −µ1V1 + µ2V2 of A0 we have (−µ1V1 + µ2V2)

∗ = −µ1V1 + µ2V2 and
rank(−µ1V1 +µ2V2) = 2. Hence,

σess(A (µ1,µ2)) = σ(A0) = [m1;m2],

where the numbers m1 and m2 are defined by

m1 := min
x∈T3

u(x), m2 := max
x∈T3

u(x).

For any fixed µα > 0, α = 1,2 we define so called the Fredholm determinant

∆(µ1,µ2; ·) := ∆1(µ1; ·)∆2(µ2; ·)+µ1µ2∆
2
3(·)

related with the operator A (µ1,µ2)) as an analytic function in C\ [m1;m2] as

∆α(µα ; z) := 1+(−1)α
µα

∫
T3

v2
α(t)dt

u(t)− z
, α = 1,2, ∆3(z) :=

∫
T3

v1(t)v2(t)dt
u(t)− z

.

Using Fredholm’s theorem and the Birman-Schwinger principle we obtain the following simple result.
Lemma 1. The quantity z ∈ C\ [m1;m2] is an discrete eigenvalue of the operator A (µ1,µ2) iff ∆(µ1,µ2; z) = 0.
By Lemma 1 for σdisc(A (µ1,µ2) we obtain

σdisc(A (µ1,µ2)) = {z ∈ C\ [m1;m2] : ∆(µ1,µ2; z) = 0}.

Therefore, for the spectrum σ(A (µ1,µ2)) of A (µ1,µ2) we have

σ(A (µ1,µ2)) = [m1;m2]∪{z ∈ C\ [m1;m2] : ∆(µ1,µ2; z) = 0}.

Now we define the following Friedrichs models Aα(µα), acting on L2(T3) by the rule

Aα(µα) := A0 +(−1)α
µαVα , α = 1,2. (2)

For a bounded linear operator A = A∗ acting in a complex Hilbert space L we determine LA(λ ), λ ∈ R as a subspace
so that (A f , f )< λ∥ f∥2 for all f ∈ LA(λ ) and put

N(λ ,A) := sup
LA(λ )

dimLA(λ ).

Notice N(λ ,A) = +∞ if λ > minσess(A); if N(λ ,A) < +∞, then it is coincide with the number of discrete eigen-
values smaller than λ of A.

Assume supp{vα(·)} be the support of the function vα(·). Lebesgue’s measure of the measurable set Ω ⊂ T3 is
denoted by mes(Ω).

Lemma 2. (a) For any fixed µα > 0, α = 1,2 the operator A (µ1,µ2) hasn’t more than 1 simple discrete eigenvalue
smaller than m1 respectively bigger than m2.
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(b) Suppose that

mes(supp{v1(·)}∩ supp{v2(·)}) = 0. (3)

For this case the quantity z∈C\ [m1;m2] is a discrete eigenvalue of A (µ1,µ2) iff the quantity z is a discrete eigenvalue
one of the operators Aα(µα), α = 1,2.

Proof. (a) Since the operator Vα , α = 1,2 is a positive definite, it is clear that A (µ1,µ2) ≥ A1(µ1). Therefore,
LA (µ1,µ2)(λ )⊂ LA1(µ1)(λ ) for λ ≤ m1. It means that

N(λ ,A (µ1,µ2))≤ N(λ ,A1(µ1)), λ ≤ m1. (4)

Since for any fixed µ1 > 0 the function ∆1(µ1; ·) is decreasing in the interval (−∞;m1) we obtain N(m1,A1(µ1))≤
1. Hence, by (4) it follows N(m1,A (µ1,µ2))≤ 1.

The assertion N(−m2,−A (µ1,µ2))≤ 1 can be proven similarly.
(b) Suppose the quantity z ∈ C\ [m1;m2] is a discrete eigenvalue of A (µ1,µ2). We denote the corresponding eigen

function by g ∈ L2(T3). Then the eigen function g satisfy the equation

(u(x)− z)g(x)−µ1v1(x)
∫

T3
v1(s)g(s)ds+µ2v2(x)

∫
T3

v2(s)g(s)ds = 0. (5)

By the determination, for al values of z ∈ C\ [m1;m2] the relation u(x)− z ̸= 0 is valid for any x ∈ T3. By this reason
from (5) we get

g(x) =
µ1v1(x)k1 −µ2v2(x)k2

u(x)− z
, (6)

where

kα :=
∫

T3
vα(s)g(s)ds, α = 1,2. (7)

Putting the formula (6) for f to (7) and using the condition (3) we conclude that the equation (5) has a nonzero
solution iff the homogeneous system of linear equations

∆1(µ1; z)k1 = 0;
∆2(µ2; z)k2 = 0

has a non zero solution (k1,k2) ∈ C2, that is, if the assertion ∆1(µ1; z)∆2(µ2; z) = 0 is valid. For the case vα(p) ≡ 0
from the definitions of A (µ1,µ2) and Aα(µα) we obtain that A (µ1,µ2) = Aβ (µβ ) for α ̸= β . Then Lemma 1
complete the proof of part (b) of the proving Lemma 2.

From part (b) of Lemma 2 it follows that under the assumption (3) there is a relation

σdisc(A (µ1,µ2)) = σdisc(A1(µ1))∪σdisc(A2(µ2))

between discrete spectra of A (µ1,µ2) and Aα(µα), α = 1,2.
Using the Fredholm determinant ∆α(µα ; ·) of Aα(µα) we conclude that

σdisc(Aα(µα)) = {z ∈ C\ [m1;m2] : ∆α(µα ; z) = 0}; (8)

σ(Aα(µα) = [m1;m2]∪{z ∈ C\ [m1;m2] : ∆(µα ; z) = 0}.

We note that the operators Aα(µα), α = 1,2 have a simple structure than A (µ1,µ2). By this matter the latter
equality plays an key role in next investigation of the field of values and the spectrum of A (µ1,µ2).

Detrmine

Iα(z) :=
∫

T3

v2
α(t)dt

u(t)− z
, z ∈ R\ [m1;m2].
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Since the function Iα(·) is an increasing in the intervals (−∞;m1) and (m2;+∞), by the Lebesgue dominated
convergence theorem there exist the following finite or infinite limits

I1(m1) = lim
z→m1−0

I1(z), I2(m2) = lim
z→m2+0

I2(z).

The finiteness or infiniteness of the last limits are important in the investigation the presence of the discrete eigen-
values of A (µ1,µ2) and the conditions under which the field of values of A (µ1,µ2) is closed as a set. In the following
we give the examples where these limits can be finite or infinite.

Example. Let

u(p) = (3− cosx1 − cosx2 − cosx3)
2, x = (x1,x2,x3) ∈ T3.

In this case m1 = 0 and m2 = 36. At the point 0 := (0,0,0) ∈ T3 The function u(·) has an unique non-degenerate
global min as well at the point π := (π,π,π) ∈ T3 has a non-degenerate global max.

(a) If vα(x)≡ 1, then |Iα(mα)|=+∞ for α = 1,2.
(b) If vα(x) = sinx1 + sinx2 + sinx3, then |Iα(mα)|<+∞ for α = 1,2.
(c) If

v1(x) =
{

sin(2x1)sin(2x2)sin(2x3), xi ∈ (−π/2,π/2), i = 1,2,3;
0, otherwise;

v2(p) =
{

cosx1 cosx2 cosx3, xi ∈ T1 \ (−π/2,π/2),= 1,2,3;
0, otherwise;

then |I1(m1)|<+∞ and |I2(m2)|=+∞.
(d) If

v1(x) =
{

cosx1 cosx2 cosx3, xi ∈ (−π/2,π/2), i = 1,2,3;
0, otherwise;

v2(x) =
{

sin(2x1)sin(2x2)sin(2x3), xi ∈ T1 \ (−π/2,π/2), i = 1,2,3;
0, otherwise;

then |I1(m1)|=+∞ and |I2(m2)|<+∞.
Let us discuss the case (c). For δ > 0 and p0 ∈ T3 we set

Uδ (x0) := {x ∈ T3 : |x− x0|< δ}.

By the properties of sine and cosine functions, there are the quantities C1,C2,C3,δ > 0 so that

C1|x|4 ≤ |u(x)| ≤C2|x|4, x ∈Uδ (0);

C1|x−π|4 ≤ |u(x)−36| ≤C2|x−π|4, x ∈Uδ (π);
C1|x1x2x3| ≤ |v1(x)| ≤C2|x1x2x3|, x ∈Uδ (0);
|v2(x)| ≥C3, x ∈Uδ (π).

Using the last estimates one can easily show that

∣∣I1(0)
∣∣= ∣∣∣∣∫T3

v2
1(s)ds
u(s)

∣∣∣∣≤C1

∫
Uδ (0)

|s1||s2||s3|
(|s1|2 + |s2|2 + |s3|2)2 ds1ds2ds3 +C2 < ∞;

|I2(π)|=
∣∣∣∣∫T3

v2
2(s)ds

u(s)−36

∣∣∣∣≥C2

∫
Uδ (π)

ds1ds2ds3

(|s1 −π|2 + |s2 −π|2 + |s3 −π|2)2 =+∞.

For the case |Iα(mα)|<+∞, α = 1,2 we set

µ
0
1 := (I1(m1))

−1, µ
0
2 :=−(I2(m2))

−1.

The set of discrete eigenvalues of A2(µ2) is described in the following result (theorem).
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Theorem 1. (a) If I2(m2) =−∞, then for all values of µ2 > 0 the Friedrichs model A2(µ2) has an unique discrete
eigenvalue lying smaller than m2.

(b) Suppose that |I2(m2)|<+∞.
(b1) If 0 < µ2 ≤ µ0

2 , then the Friedrichs model A2(µ2) hasn’t discrete eigenvalues bigger than m2.

(b2) For µ2 > µ0
2 the Friedrichs model A2(µ2) has an unique discrete eigenvalue bigger than m2.

(c) For all values of µ2 > 0 the Friedrichs model A2(µ2) hasn’t discrete eigenvalues smaller than m1.
Proof. (a) Let I2(m2) =−∞. Then for all values of µ2 > 0 we have lim

z→m2+0
∆2(µ2 ;z) =−∞.

Using the monotonicity property of the continuous function ∆2(µ2 ; ·) in (m2;+∞) and the equality

lim
z→+∞

∆2(µ2 ;z) = 1, (9)

we obtain that there exist E2(µ2) ∈ (m2;+∞) such that ∆2(µ2 ;E2(µ2)) = 0. Therefore, by equality (8) the number
E2(µ2)> m2 is an eigenvalue of A2(µ2).

(b1) Assume that |I2(m2)| < +∞ and 0 < µ2 ≤ µ0
2 . Since the function ∆2(µ2 ; ·) is an increasing in the interval

(m2;+∞), for any z > m2 we have

∆2(µ2 ;z)> ∆2(µ2 ;m2)≥ ∆2(µ
0
2 ;m2) = 1+µ

0
2 · I2(m2) = 0.

Hence, by (8) the operator A2(µ2) has no eigenvalues in (m2;+∞).
(b2) Let now µ2 > µ0

2 . In this case

∆2(µ2 ;m2)< ∆2(µ
0
2 ;m2) = 1+µ

0
2 · I2(m2) = 0,

that is, ∆2(µ2 ;m2) < 0. Since the function ∆2(µ2 ; ·) is an increasing in the interval (m2;+∞), by equality (9) there
exist E2(µ2) ∈ (m2;+∞) such that ∆2(µ2 ;E2(µ2)) = 0. From the equality (8) we get that the quantity E2(µ2)> m2 is
a discrete eigenvalue of A2(µ2).

(c) It is easy to see that ∆2(µ2 ;z) ≥ 1 for any µ2 > 0 and z < m1. From here using the equality (8) we obtain that
the Friedrichs model A2(µ2) hasn’t discrete eigenvalues in (−∞;m1).

Theorem 1 is completely proved.
Now we describe the set of eigenvalues of A1(µ1).
Theorem 2. (a) If I1(m1) = +∞, then for all values of µ1 > 0 the Friedrichs model A1(µ1) has an unique discrete

eigenvalue smaller than m1.
(b) Assume that I1(m1)<+∞.
(b1) If 0 < µ1 ≤ µ0

1 , then the Friedrichs model A1(µ1) hasn’t discrete eigenvalues smaller than m1.

(b2) For all values of µ1 > µ0
1 the Friedrichs model A1(µ1) has an unique discrete eigenvalue smaller than m1.

(c) For all values of µ1 > 0 the Friedrichs model A1(µ1) hasn’t discrete eigenvalues bigger than m2.
Theorem 2 can be proven by the same way as the proof of Theorem 1.
From Lemma 2, Theorems 1 and 2 it follows
Corollary 1. Let the condition (3) be fulfilled.
(a) If either |Iα(mα)|=+∞ and µα > 0 for α = 1,2 or |Iα(mα)|<+∞ and µα > µ0

α for α = 1,2, then the operator
A (µ1,µ2) has two simple eigenvalues Eα , α = 1,2 such that E1 < m1 and E2 > m2.

(b) If |Iα(mα)|<+∞ and 0 < µα ≤ µ0
α for α = 1,2, then the discrete spectrum of the Friedrichs model A (µ1,µ2)

is an empty set.
From Corollary 1 one can see that the operator A (µ0

1 ,µ
0
2 ) has no eigenvalues lying outside of its essential spectrum,

and hence the relation σ(A (µ0
1 ,µ

0
2 )) = [m1;m2] is valid for the spectrum of A (µ0

1 ,µ
0
2 ). .

THE FIELD OF VALUES OF THE FRIEDRICHS MODEL

The section is devoted to the description the field of values W (A (µ0
1 ,µ

0
2 )) of A (µ0

1 ,µ
0
2 ) depending on the value of

the function vα(·), α = 1,2. Our investigations are based on the threshold analysis techniques.
During the section, we suppose that at the point x1 ∈ T3 the function u(·) has an unique non degenerate global min

and at the point x2 ∈ T3 has an unique non degenerate max, and for α = 1,2 at some neighborhood of xα ∈ T3 the
continuous partial derivatives up to the third-order inclusive of the function vα(·) are exist.
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Now we establish that the class of the parameter functions vα(·), α = 1,2 satisfying above mentioned conditions is
nonempty. Let these functions have the forms:

u(x) = 3− cosx1 − cosx2 − cosx3;

v1(x) =
{

cosx1 cosx2 cosx3, xi ∈ (−π/2,π/2), i = 1,2,3;
0, otherwise;

v2(x) = cosx1 cosx2 cosx3 − v1(x), x = (x1,x2,x3) ∈ T3.

For this special case the point x1 = (0,0,0) the function u(·) has an unique non-degenerate global min and at
the point x2 = (π,π,π) has an unique non-degenerate max. For α = 1,2, the function vα(·) is an analytic in the
δ < π/2-neighborhood Uδ (xα) of the point pα . Validness of the condition (3) follows from the definition of vα(·).

Theorem 3. Let the condition (3) be fulfilled. If vα(xα) = 0 for α = 1,2, then

W (A (µ0
1 ,µ

0
2 )) = [m1;m2](= σ(A (µ0

1 ,µ
0
2 ))).

Proof. First of all we recall that by Corollary 1 we have

σ(A (µ0
1 ,µ

0
2 )) = σess(A (µ0

1 ,µ
0
2 )) = [m1;m2].

From the boundedness and self-adjointness of A (µ0
1 ,µ

0
2 ) we get that its spectrum and the field of values are related

with the equality W (A (µ0
1 ,µ

0
2 )) = [m1;m2]. If in addition vα(xα) = 0, α = 1,2, then we show that W (A (µ0

1 ,µ
0
2 )) =

[m1;m2]. It remains to prove that mα ∈ W (A (µ0
1 ,µ

0
2 )).

We determine the function

gα(x) = (−1)α+1 µ0
α vα(x)

u(x)−mα

. (10)

We proceed to show that this function satisfies the equation A (µ0
1 ,µ

0
2 ) fα = mα fα . Indeed,

(A (µ0
1 ,µ

0
2 )−mα)gα(x) = (u(x)−mα)(−1)α+1 µ0

α vα(x)
u(x)−mα

−µ
0
1 v1(x)(−1)α+1

µ
0
α

∫
T3

v1(s)vα(s)ds
u(s)−mα

+µ
0
2 v2(x)(−1)α+1

µ
0
α

∫
T3

v2(s)vα(s)ds
u(s)−mα

.

Using the assumption (3) and definition of µ0
α we obtain

(A (µ0
1 ,µ

0
2 )−mα)gα(x) = (−1)α+1

µ
0
α vα(x)

[
1+(−1)α

µ
0
α

∫
T3

v2
α(s)ds

u(s)−mα

]
= 0, α = 1,2.

The task is now to prove that gα ∈ L2(T3) if vα(xα) = 0. Indeed. Let v(xα) = 0. Using the fact that continuous
partial derivatives up to the third-order inclusive at some neighborhood of xα ∈ T3 of the function vα(·) are exist, we
obtain that there exist the quantities C1,C2,C3 > 0, nα ∈ N and δ > 0 so that

C1|x− xα |nα ≤ |vα(x)| ≤C2|x− xα |nα , x ∈Uδ (xα). (11)

By the assumption at the point x1 ∈ T3 the function u(·) has an unique global non-degenerate min and at the point
x2 ∈ T3 has an unique global non-degenerate max, and hence there exist the quantities C1,C2,C3,δ > 0 so that

C1|x− xα |2 ≤ |u(x)−mα | ≤C2|x− xα |2, x ∈Uδ (xα), (12)

|u(x)−mα | ≥C3, x ∈ T3 \Uδ (xα). (13)
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By the additivity property of the integral we obtain the conclusion∫
T3

|gα(s)|2dt = (µ0
α)

2
∫

Uδ (xα )

v2
α(s)ds

(u(s)−mα)2 +(µ0
α)

2
∫

T3\Uδ (sα )

v2
α(s)ds

(u(s)−mα)2 . (14)

Then by (11) and (12) we obtain for the first summand of (14) the estimation∫
Uδ (xα )

v2
α(s)ds

(u(s)−mα)2 ≤C1

∫
Uδ (xα )

|s− xα |2nα ds
|s− xα |4

.

Now, changing the coordinate system

s1 = x(1)α + r sinψ cosϕ,

s2 = x(2)α + r sinψ sinϕ,

s3 = x(3)α + r cosψ, 0 ≤ r ≤ δ , 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ π,

we obtain the finiteness of the last integral, where s = (s1,s2,s3) and xα = (x(1)α ,x(2)α ,x(3)α ).
The function vα(·) is continuous on T3, the estimation (13) implies that∫

T3\Uδ (xα )

v2
α(s)ds

(u(s)−mα)2 ≤C1

∫
T3\Uδ (xα )

ds <+∞.

Therefore, if v(xα) = 0, then gα ∈ L2(T3). In this case we obtain

(A (µ0
1 ,µ

0
2 )gα/∥gα∥,gα/∥gα∥) = mα(gα/∥gα∥,gα/∥gα∥) = mα .

Therefore, mα ∈ W (A (µ0
1 ,µ

0
2 )) for α = 1,2, that is, W (A (µ0

1 ,µ
0
2 )) = [m1;m2].

Remark 1. When we prove the Theorem 3 we show that if vα(xα) = 0 for α = 1,2, then the point z = mα is not only
bound of the essential spectrum of A (µ0

1 ,µ
0
2 ), but it is also an eigenvalue of A (µ0

1 ,µ
0
2 ). By this reason it is called

the threshold eigenvalue of A (µ0
1 ,µ

0
2 ).

Theorem 4. Let the condition (3) be fulfilled. If vα(pα) ̸= 0 for α = 1,2, then W (A (µ0
1 ,µ

0
2 )) = (m1;m2).

Proof. Once again we recall that σ(A (µ0
1 ,µ

0
2 )) = [m1;m2]. We show that if vα(xα) ̸= 0 for α = 1,2, then mα ̸∈

W (A (µ0
1 ,µ

0
2 )), α = 1,2. Suppose, this assertion is false, that is, mα ∈ W (A (µ0

1 ,µ
0
2 )), α = 1,2. Then there exists

the function gα ∈ L2(T3) with ∥gα∥ = 1 such that (A (µ0
1 ,µ

0
2 ) fα , fα) = mα . A trivial verification shows that the

function gα has the form (10).
From the continuity of the function vα(·) on T3 and v(pα) ̸= 0 we get that there are the quantities C1,δ > 0 so that

|vα(x)| ≥C1, x ∈Uδ (xα). (15)

Applying (12) and (15) we receive ∫
T3

|gα(s)|2ds ≥C1

∫
Uδ (xα )

ds
|t − xα |4

=+∞.

This implies gα ̸∈ L2(T3). On the other hand applying (11), (12), (13) and using the continuity property of vα(·) on
T3 we have ∫

T3
|gα(s)|ds = µ

0
αC1

∫
Uδ (xα )

|s− xα |nα dt
|s− xα |2

+µ
0
αC2

∫
T3\Uδ (xα )

ds <+∞.

This means gα ∈ L1(T3), where by L1(T3) we denote the Banach space of integrable (in general complex valued) func-
tions on T3. Therefore, gα ∈ L1(T3)\L2(T3), which contradicts the fact that gα ∈ L2(T3). So, mα ̸∈ W (A (µ0

1 ,µ
0
2 )),

α = 1,2.
From Theorems 3 and 4 it follows the following assertion.
Corollary 2. Let the condition (3) be fulfilled.
(a) If v2(x2) ̸= 0 and v1(x1) = 0, then W (A (µ0

1 ,µ
0
2 )) = [m1;m2);
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(b) If v2(x2) = 0 and v1(x1) ̸= 0, then W (A (µ0
1 ,µ

0
2 )) = (m1;m2].

In the remainder of this section we study the virtual levels and threshold eigenvalues [16] of A (µ0
1 ,µ

0
2 ).

The Banach space C(T3) is contain all continuous functions on T3.
Definition 1. Let the condition (3) be fulfilled and α = 1,2. If the quantity 1 is an discrete eigenvalue of the

Fredholm operator

(Gα(µ1,µ2)ψα)(x) =
∫

T3

µ1v1(x)v1(s)−µ2v2(x)v2(s)
u(s)−mα

ψα(s)ds, ψα ∈C(T3)

and the corresponding eigen function ψα(·) (up to constant factor) is satisfy the assertion ψα(pα) ̸= 0, then at the
point z = mα the Friedrichs model A (µ1,µ2) is said to have a virtual level.

Remark 2. For α ∈ {1,2} the quantity 1 is a discrete eigenvalue of the Fredholm operator Gα(µ1,µ2) iff µα = µ0
α .

Consequently, at the point z = mα the operator A (µ1,µ2) has a virtual level iff µα = µ0
α . In this case the value of

µβ > 0 with β ̸= α is an arbitrary.
Definition 2. Let α = 1,2. At the point z = mα the Friedrichs model Aα(µα) is said to have a virtual level, if the

quantity 1 is a discrete eigenvalue of the Fredholm operator

(Ĝα(µα)ϕα)(x) = (−1)α+1
µα vα(x)

∫
T3

vα(s)ϕα(s)ds
u(s)−mα

, ϕα ∈C(T3)

and for the corresponding eigen function ϕα(·) the assertion ϕα(pα) ̸= 0 is valid.
We mention that in [17] the Friedrichs models family hµ(p), p ∈ T3, µ > 0 with rank one perturbations, is consid-

ered. Authors are proved that for all p ̸= 0 there exists a unique eigenvalue of hµ(p), lying on l.h.s. of the essential
spectrum if hµ(0) has either a threshold eigenvalue or a virtual level at the point z = 0. In [18, 19] for a family of
Friedrichs models with rank perturbation is used the threshold analysis to investigate the number of discrete eigenval-
ues of the corresponding three-particle discrete model Schrödinger operator. Similar results are discussed in [20, 21]
for some 3×3 operator matrices.

Taking into account Definitions 1, 2 and Remark 2 we receive the statement.
Corollary 3. Let the condition (3) be fulfilled and α = 1,2.
(a) At the point z = mα the operator A (µ1,µ2) has a virtual level iff at the point z = mα the operator Aα(µα) has

a virtual level.
(b) The quantity z = mα is a threshold eigenvalue of A (µ1,µ2) iff the quantity z = mα is a threshold eigenvalue of

Aα(µα).
We remark that the spectrum of the Friedrichs model A (µ1,µ2) may consist of a union of one, two, or three sets.

In this paper we study the field of values in the case where the spectrum of A (µ1,µ2) is a purely essential. Mainly
we analyzed the problem of whether boundary points of the essential spectrum of A (µ1,µ2) belong to its numerical
range. As a conclusion one can notice that if both the bounds z = mα , α = 1,2 are threshold eigenvalues of A (µ1,µ2)
then the numerical range and spectrum of A (µ1,µ2) are coincide. Thus, in this paper we have established a relation
between the numerical range and threshold eigenvalues or virtual levels of A (µ1,µ2).

For the generalized Friedrichs model the results, where both boundary points of its essential spectrum are either
threshold eigenvalues or virtual levels, were studied in [16, 22, 23] and they used to proof the existence the so-called
two-sided Efimov’s effect in [22, 23].

CONCLUSION

In the present paper the Friedrichs model A (µ1,µ2), µ1,µ2 > 0 with rank two perturbation is considered. This
operator is related with a system of two quantum particles on 3D lattice. Firstly an information (definition, main
properties and examples) about the field of values of a linear operators are given. Using the Weyl theorem the
essential spectrum of A (µ1,µ2) is found. The discrete spectrum of A (µ1,µ2) is described as a set of all zeros
of the corresponding Fredholm determinant. The number and location of the discrete eigenvalues of A (µ1,µ2) are
investigated. The sufficient and necessary conditions which guarantees the equality of the spectrum of A (µ1,µ2) and
its field of values (or numerical range) are given. The relation of the threshold eigenvalues and virtual levels with the
numerical range of A (µ1,µ2) are established.
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