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Abstract. We consider a non-linear heat equation involving a fractional derivative in time, with a nonlocal boundary condition.
We determine a diffusion and a source control term of the time variable, and the temperature distribution for a problem with two
over-determining condition of integral type. We prove the existence and uniqueness of the solution, and its continuous dependence
on the data.

INTRODUCTION

The fractional diffusion equation more accurately represents the anomalous process than the classical heat exchange
equation. Therefore, scientific research in this direction is of interest to mathematical scientists and engineers [1]. This
work is part of the above direction in which the character of the environment is expressed function determination, that
is, the inverse issue has been studied [2, 3].

Inverse source problems are the problems that consist of finding the unknown source control term via an additional
data. Some works on fractional inverse diffusion problems have been published. We refer to [4, 5].

Here, we consider the so-called fractional diffusion problem involving the linear nonhomogeneous equation:

ur(x,1) + 0 u(x,t) — kuyy + q(t)u(x,t) = f(x,2), x€(0,1),7€(0,T], (1)

with initial and nonlocal boundary conditions
u(x,O) - a(x), X € [Oa 1}, 2
u(0,6) =u(l,1) uy(1,¢) =0, t€[0,T], 3)

where J* is the Caputo fractional derivative of order o € (0,1) in the time variable, defined by
1 t
oY t=7/ t—1)" % (1)dr,
0 = g -0 (@)

and ¢(t), ¢ > 0 is the source control term [3], f(x,#) is the known source term, a(x) is the initial temperature.

Our inverse problem consists of determining the diffusion coefficient k and the time dependent unknown coef-
ficient of the source control term ¢(¢) and the temperature distribution u(x,), from the initial temperature (2) and
the boundary conditions (3). To be determined uniquely k and ¢(¢), we need the following two over-determination
conditions:

/ (. r)dx = (1), @)

and

/Ol Xu(x,t)dx =B (1), ®)

where g(¢), B(¢) are given thermal energies.
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PRELIMINARIES

In this section, we give some notations which will be repeatedly used in the sequent sections. The Mittag-Leffler
function plays an important role in the theory of fractional differential equations; for any z € C the Mittag-Leffler
function with parameter « is

Zk

Ea(Z) = ,;)HT—M’ E)fi(oc) > 0. (6)

In particular, E1(z) = €°.
The Mittag-Leffler function of two parameters E, g(z) which is a generalization of (6) is defined by

o k
z
Eap(d) =) mTay
P k;O T(ak+B)
where o, B,z € C with R(a) > 0, 5R(x)- denotes the real part of the complex number o.
Proposition 1. Ler 0 < oo < 2 and B € R be arbitrary. We suppose that K is such that 1o /2 < k < min{7,wo}.
Then there exists a constant C = C(o, 3, x) > 0 such that

|Eqp(2)] < K < larg(z)] < 7.

1+ 2]’

For the proof, we refer to [6] for example.

Proposition 2. Let 0 < a < 1 and A > 0, then we have
d

EEa,l(—Ma) = M Ego(—A1%), t>0.

Proposition 3. Ler 0 < o < 1 and A > 0, then we have

OFEq1(—At%) = —AEq 1 (—At%), 1>0.

Proposition 4. Let o > 0, B > 0 and A > 0, then we have
d
Etﬁ‘lEaﬁ(—)Lt“) =tP2E, 5 1(—At%), 1>0.

The proof of these assertions come from the definition of Caputo fractional derivative and differentiation of the
two-parameter Mittag-Leffler function.
Proposition 5. (see [7]) For0 < oo < 1, t >0, we have 0 < Eq(—t) < 1. Moreover, Eq(—t) is completely monotonic,

that is
di’l
n
Proposition 6. For 0 < o <1, n >0, we have 0 < Eq o(—1) < ﬁ. Moreover, Eq o(—1) is a monotonic

decreasing function with 1 > 0.

Lemma 1. (see [6]) The following Laplace transform of a three-parameter Mittag-Leffler function is true:
° sa’y_ﬁ
(s*F o)’

where |®/s*| < 1 and
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(7)n denotes the Pochhammer symbol or the shifted factorial defined by

(Yo=1, Vn=v(y+1)-..-(y+n—1), v#0.

Definition 1. The Fox H—function is a generalized hypergeometric function, defined by means of the Mellin-Barnes
type contour integral [8]

H™n /%mn ﬁvd
P4 [Z b;,B;) ] 27i 5

where
H F(b +B s) H [(1—a;—As)

H(s) = —

H F(l*bj*BjS) H F(ai+A,’S)
Jj=m+1 i=n+1

with complex variable 7 # 0 and a contour Q in the complex domain; the orders (m,n, p,q) are non-negative integers
sothat0 <m<gq,0<n< p, the parameters A; >0, B; > 0 are positive and a;, b;,i=1,...,p; j=1,...,q are arbitrary
complex such that

Aib;+1) #Bjlai—1'=1); LI'=0,1,2,...i=1,...,n,j=1,..,m. )

The details on the properties of the Fox’s H—function and types of contour € can be found in [8].
Let

)4 n q
Z Y=Y A - Z A+ZB Y B ®)

j=1 j=n+1 Jj=m+1

||
g MQ

The Mittag-Leffler function can be expressed in terms of the Fox H—function as follows (see [8], p. 25)

1
Y _ 1,1
Ea,ﬁ(z) - F(Y)Hl [ Z| 0, )7( ﬁ,O{)]’ Re(’)’) > 0.

Lemma 2. (see, [2]) Let v and [ be as given in (8) and let the condition (7) be satisfied. Then there holds the
following result:
If u > 0, 7> 0 then the H—function has the asymptotic expansion at infinity given by

H(2) = 0 (I m@IM), el =,
where

R(a;) -1
A

d_min[
J

} ,1<j<n
and M is the order of the poles Wy = 17272%’ A=1,..,nk=0,1,2,... to which some of the poles of T'(1 —a; —
Ajs), j=1,2,...,n coincide.

EXISTENCE AND UNIQUENESS RESULT

First, note that for the non-selfadjoint operator AX = —X" = 4, X with X(0) = X (1), X'(1)=0
Xo(x)=2 Xon(x) =4cosAx  Xpp_1(x) =4(1 —x)sinA,x ©)
and

Yo(x) =x Y2,(x) = xcos Apx Yop—1(x) =sinA,x (10)
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A=2mn, n=1,2,3...

which are Riesz bases in L, [0, 1]. For more details, the reader can consult [2], [9], [10]. Let us define the following
space:

C(Q) = {u(x,1) : u(-,t) € C*(0,1);¢ € [0,T]and I %u(x,-) € C(0,T];x € (0,1)}.
The functions a, f, g and B satisfy the following assumptions:

(A1) f(x,1) € C30(0,1] x [0,T]), fH (1) € Lo[0,1] and f(1,1) = f(0,), full,t) =0, fux(0,1) = fra(Lo1),
Few(1,6) =0 forz € [0,T) and B (r) = [, f(x,1)dx # 0(€ AC[0,T]) forall € [0,T];

(A2) a(x) € C?[0,1], a™® (x) € L[0,1]; a(1) = a(0),d'(1) = 0,a"(1) = a"(0), a"' (1) = 0;
(A3) g(t) € C'[0,T] and [y a(x)dx = g(0);

(A4) B(t) € C'[0,T] and [y x2a(x)dx = B(0). Let Ba(r) = [y x*f(x,1)dx € AC[0,T).
By applying the Fourier method, the solution u(x,) of the problem (1)-(3) can be expanded in a uniformly conver-
gent series in term of eigenfunctions of (9) in L,[0, 1] of the form

u(x,t) = up(t)Xo(x) + i Uz (1) Xon (x) + i uzn—1(t)X2n—1(x) (11)
n=1 n=1

The coefficients uy(t), uz,(t), u2,—1(t) for n > 1 are to be found by making use of the orthogonality of the eigen-
functions. Namely, we multiply (1) by the eigenfunctions of (9) and integrate over (0, 1). Recall that the inner product

in L,[0,1] is defined by (f,g) = fol f(x)g(x)dx. Let us note the expansion coefficients of f(x,#) and a(x) in the
eigenfunctions of (10) for n > 1 respectively by

(f(x,1),Yo(x)) = folt),
(f(x,1),You—1(x)) = fon—1(), (12)
(f(xut)7Y2n(-x)) :on(t)u

and

a(x),Yo(x)) = ao,
(G(X),anfl(x)) =d—1, (13)
(G(X),an ()C)) = .

We obtain in view of (1) and with (u(x,?),¥y(x)) = uo(?),
up(t) + 0 uo(t) + q(t)uo () = fo(t),
and according to Fy(t) = fo(t) — q(¢)up(t), and first component of (13), we may write

{ Mé)(t) —;jt(o(t)b;og)ao: FO(I)’ (14)

For uy,(t) = (uan(x,1),Y2,(x)); n > 1, in view of (1) we have

{ thy, (1) + 0% Uz (t) + kA2u2y (1) = Foa(t),

Un (0) = dazp (15

where Fa,(t) = fan(t) — q(t)u2,(t) — kAnuz,—1(¢). Also, the linear fractional differential equations satisfied by
upn—1(t);n > 1, are

{ u/2n—1(t) + atwuzn—l (t) +k2’nzu2n—1 (t) +q(t)u2n—1 ([> = f2n—1 (t)7 (16)
u2,-1(0) = azp—1.

Applying Laplace transform to (14), we get the following Volterra integral equation satisfied by the solution

w@) = [ Era(~(t-0)" ) (fo(0) ~g(Fuo(®))
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taot' YE1 _go-a(—t""%) +agE_o(—t'7%). (17)
This solution is bounded in C[0, T] in view of (A1)-(A3). We have

o (2)] < (||f0||c[0,r] + Hq”C[O,T]HMO(Z)H) ’/OtEl—a(—(t_T)la)dT

+lao| - [t'"*E1_a2-al+laol - |E1—a(—1'"%)|

< 1T follepo,r) + 2T *laol +c1T*|\qllcpo,m w0 (2]
here and hereinafter ¢; are positive values independent of given functions and 7. Hence,

1T | follcpo,r) + laol(c1T% +¢2)

Juo(e)] < — =W, a8)

here

1
Yo =c1T%qllcjo.r) < 7 (19)

Let Z[upn—1(t)] := Uan—1(s) be the Laplace transform of u,,— (¢) with respect to variable 7. In sequence, applying
to equation (16) the Laplace transform with respect to the time variable ¢, we obtain the following equation:

sU2p—1(8) = Uzp—1(0) +5%Unn—1 () — s ' U2s—1(0) + A2 kU1 (5) = P21 (s),
where 2 [fon—1()] := ®2,—1(s). After solve this with equation respect to U (s) we get

1 sl

U. ——— Dy, ————ay |-
m-1(5) = STsa Ak ](s)+s+s0‘+knzka2" 1

(20)

We calculate the inverse Laplace transform of the function Up,_ (s) defined by (17). First, these operations we carry

out for — - Wy ®,,1(s). It may be performed by using the equality
1 1 1
=— , 1)
s+s%+ A2k s+ s® 1+%
Ly A2k’
14 2k S\ s
for g’lﬂa < 1. On bases of (21) from last equality we have
1 B i (—=A2k) st
SHsOHAK = (s 1)t
Then, according to Lemma 2, we note
1 A2k pit] -
S+Sa+)l/2k |:th k ]Elj O!]+1( t a)i|’ (22)
n
and
57! ae (LA 2k) B! 1-a
Sts%+ A%k [Ztl Ak EL aj-ar2(~ )]
n :
s +1 J(=A2k)) j+1 Cay VL jtl—a 28 it -«
s+s°‘+lzk [Zt k E] O‘JH( )+Zt (_)’nk) Ei a,j+2— a( t )| (23)

Jj=0
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We can get

1—oyi
th 2k jE/+l ( tl—a):Z 2k j[jz ]+1) (_t tx)

1—a,j+1 .
N ) aitj+1) il
- )i S (i+1); (=A2kt) & . ,
- : = E Akt
,;3 JZ(JF o)i+j+1) j! l;’)( ) 1,(1—- OH+1( );
and
- > > i 1—o\i
)2k ipit] 1—ay _ Y (L2t (J+1)i (—11-9)
f;)t A e -a j;)( s ,;F((l—a)iﬂ—aﬂ) i!
3 o i+ 1), (—A2kt) &,
= n — El+1 zk .
igé ; l+] oa+2) j! ,-zz(’)t (=) L(1-a)i+2— o (= A kt)

Taking into account (24) and (25), from (22) and (23), we obtain solution of (16):

Han 1 / t_T )EHF(: Ot)1+l( lzk(t_r))[fh—l(f)

=)

gDz ()] dTt azy g | L (-1 OEVE L (<AZK)
i=0

)

+;)(—1)t(l VEL it (—Aike)]

According to proposition 4

EM A2kt !

2 1+1 ),1)
L,(1-o)i+2— oc( n ) F( _|_1) VL kt| }

—((1—a)i+2—a),1)

1

i+1 2 _
Eviayi (“a kt)_l"(iJrl)

L11q 2, (1=(i+1),1)
L(-a H1,2Mnkt|(O,l),(l—((l—a)i+1),1)]

Then, according to Lemma 2, we have

1,192, ,(1=(i+1),1) c3
H), Mnkt|(0,1),(1—((1—a)i+2—a),1)] < (A2kr)it 1’
and

1,11 27, (1=(i+1),1) C4
H172 M”kﬂ(o,l),(lf((l a)i+1),1 } (AZkt)H-l
From the last estimates, we can get aprior estimate for uy, 1 (¢):

C _
izt O < 22 [ font -+ lazat ] [1=91] o=

where ¢s5 = max{c3,cs} and

c4

1
e P lalcon < 5.

Y, = 5

Similarly does operation to the problem of (15) like (16), we obtain its solution

U, (1 / l_Tl O‘) EIJ?} Ot)H—l( ﬂ,zk([—r)) [on(T)

040007-6
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=

— (T un(T) — 2kt (r)} dt + an, [Z A YRR (-AK)
i=0

+ Z “VEL it (—hakt)]. 29)
Under the conditions (A1)-(A3) the function uy,(¢) is bounded in C[0, 7] as follows

()1 < 2 [ fnll + ezl + Ay | [1 = 941] " o= v (30)

Let us use the topological product Banach spaces Y = C[0,T] x C[0,T] x C[0,T] endowed with its norm to prove
the existence and uniqueness of the solution under this form (uo(2),u2,(),u2,—1(t)) € Y. Define the operator I on Y
by T'(ug, uzn, u2n—1)(t) = (Pouo(t), Panttzn(t), Pay—1u2,—1(t)) where the operators Py, Pay, Ps,—1 are defined on C[0,T]
by the right side of (17), (26) and (29) respectively. In view of (18), (27) and 30)T": Y — Y.

Prove that I" is a contraction on Y. So, for each

(uo (1), u2n(t),u2n—1(t)); (vo(t),van(t),v2n—1(t)) €Y
we have
(T (uo, u2n, u2n—1) — T (vo,van,van—1)lly
< max(||Pouo — Povollcio,r); [|Pontt2n — Pravan|lcio,r); | Pan—1120—1l cjo.77)-
First, we get easily

(| Pouo = Povollicpo. 73 < 1T “llqllcio.r 1140 = vollcpo,r) < Polluo —vollepo, 7

forn>1
[ Pon—1t2n—1 — Pon—1van—1lly <Wil[uan—1—van—1llcio.r)-

Similarly, for each € [0, T]

| Pantton — Ponvan|ly < W1 luzn —vaullcio,r) + 2k ¥2|[t2n—1 —vau-1llco7)s
which gives for n > 1, here ¥;, (i = 0, 1) are given in (19), (28) and

7

1
LT e 31
A,%ke (€29

v, =
Consequently,

T (w0, t2n, u2n—1) — T (vo, van, van—1)lly

< max | (¥ouo = vollegory: ¥ ezt = van-1lcto.ry: 1 luzn = vanllcio 1))
+2M,k¥> (0;0; lu2n—1 —van—1 ||C[0,T]>}

¢
= [T (uo, t2n, 2n—1) — T (vo, van,van—1)|ly < [maX(‘Po;‘I’l)-FEe 2kt |

X H(u()auZn,uanl) - (VOaVZmVanl)”
According to (19) and (26)

1
max(Wo; Py) + ZLe M7 < 1 for

1
€7 e A2kTO < l

™ 7 (32)

Then, T is a contraction on Y and has a unique fixed point which is the coefficients (ug,uap,u2,—1) of the solution
(11). Then, there exists a unique solution of (1)-(3) for arbitrary ¢(¢) bounded in C[0, T].
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DETERMINATION OF THE DIFFUSION COEFFICIENT k& AND ¢(z) IN C[0,T]

Firstly, we recover the unknown diffusion coefficient k. For this, we use the over-determination conditions (4) and (5).
So, applying over-determination conditions (4) and (5) to equation (1), we obtain the following system of equations
with respect to the unknowns:

£+ @0~ [ udet g0l = Bi(0), (33

B0+ QB0 & [ uds + Ble)ale) = falr). (34)

If we multiply equation (33) by (¢), equation (34) by g(z), and also taking into account that

1 1
/ updx = —u,(0,7), and / Cugdx = —2u(1,1) +2g(1),
0 0

then, we obtain

B0+ OB+ BOL [ e 0) - 9] k(280

Tuolt) +8zu2n () +B(0) Y. itz (1)) = Br(1)2(0). 35)
n=1

Considering the value of (35) in t = 0, we have

i L[8OIB'©0) +9*B0) ~ A (O)] , B(O)[B1(0) —£'(0) — 9*¢(0)]

2 \% \%

(36)

where

Vi= gZ(O) +2a0g(0)+2B(0 Z Anany—1 +4g(0) i Aoy (A5)
n=1

In subsequent calculations, we take k as a known number.
Then, we derive (11) with respect to x and get u,(0,7) = ¥ 87nuy,—(t) where up,—1(t);n > 1 are given by (26).
n=1

Under (A2)-(A3) the last series is convergent.
From (33) we obtain an integral equation with respect to g(¢) as follows

q@:g(lt)lm ¢(0)—3%(1) kzzwuzn | )]
or
a0 =00~ o T [ [3 (00" B gy (A3 - e ()] az, 6D
where
wlt) =5 [ﬁm ZM k / O B (22K = 1) for (1)

=

721141 Jkar, l[g( l)t(l oc)(z+1)Ez+d Wi e lr%kt)Jr;)(fl) i (1- zx)zEer(} oc)z+1( Azkt)”.
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The solution of integral equation (26) depends on g, i.e. uz,—1 = uz,—1(t;q). We introduce an operator G defining it
by the right hand side of (37)

Glq)(t) = qo(t) — % i]n/ot {i‘é(—(r— 7)1 %) Elﬂ wiv1 (—hk(t = 0)q(T)uza-1(7:4) | dT. (38)

Then equation (38) is written in a more convenient form as

q(t) = Glg) (1) (39)

Let goo := max;c[o,7] -Fix a number p > 0 and consider the ball

@ (g0,p) :={q(t) : q(t) € C[0,T],]lg — qol| < p}-

Theorem 1. Let (Al)-(A5) be satisfied. Then the inverse problem has a unique solution {u(x,t),k,q(t)} for some
small T.

Proof. Let us first prove that for an enough small T > 0 the operator G maps the ball ®7 (g, p) into itself, i.e., the
condition ¢(t) € ®7(go,p) implies that G[g](¢) € D7 (qo,p). Indeed, for any continuous function ¢(t), the function
Gq](¢) calculated using formula (38) will be continuous. Moreover, estimating the norm of the differences, we find
that

1

MH elmﬂw%waﬁfm
1Glq](t) — qo(t)]| < Z ’1_wf

Here we have used the estimate (27). Note that the function occurring on the right-hand side in this inequality is
monotone increasing with T, and the fact that the function g(¢) belongs to the ball ®7 (o, p) implies the inequality

llgll < p+ gl (40)

Therefore, we only strengthen the inequality if we replace ||¢|| in this inequality with the expression p + ||qo| -
Performing these replacements, we obtain the estimate

p+Mﬂ “e*m“\mwwwmwm

1Glg] (1) —qo(0)]| < Dl B e PRI

M

Where

¥, = (p+llql)¥2 < 1. (41)

According to the Abel’s test and (A1)-(AS), the following series are convergent

o
K : ie e |a2n—1]
1= :

= n 1=(p+lql)¥

1
i e W | fa
| — (P +llqol)¥

Let 77 be a positive root of the equation

1
A,%kT‘l . |a2n71 | + ||f2nfl H _
mn 1= (p+|ql)¥2

C(p +llgol)
80

m(T) =

M48

Then for T € [0,7;] we have G[g](t) € ®' (qo,p): Now consider two functions g(¢) and §(t) belonging to the ball
@7 (qo,p) and estimate the distance between their images G|g](t) and G[g](¢) in the space C[0,T]. The function
fipn—1(¢) corresponding to G(z) satisfies the integral equation (26) with the functions az,—1 = dz,—1 and fo,—1(f) =
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fan—1(t) Composing the difference G|q](t) — G[4](t) with the help of equations (27) and then estimating its norm, we
obtain

e A,%ka

It ~claol < T4 ¥

— [llgl -1 | + 11721 ]

Using inequality (26) and the estimate (27) with az, | = @1, foan_1(t) = fou_1(t), we continue the previous
inequality in the following form:

C x,%kra n_ n— .
Iaialt)~clalo < T4 3 < el Bl g) @)

The functions ¢(t) and G(¢) belong to the ball ®7 (¢, p), and hence for each of these functions one has inequality (37).
Note that the function on the right-hand side in inequality (38) at the factor]|g|| is monotone increasing with ||g/l,||g||
andT. Consequently, replacing ||g|| and ||g|| in inequality (38) (including in A) with p + ||g|| will only strengthen the
inequality. Thus, we have

e e |azn—1+ | fan—1]l]

1Glq)(r) — Glg] () || < |qHZ n 1—(p+|lql)¥>

(1+(p+llgl)gll < ma(T)]4]

Let 77 be a positive root of the equation

_ 1
Clgll & e "% |azn—1 +| fontll|

maT) =2, L It gD (1+(p+llgll) =1

Then for T € [0, 73] we have that the distance between the functions G[g](¢) and G[g](¢) in the function space C[0,T]
is not greater than the distance between the functions ¢(¢) and §(¢) multiplied by m,(T) < 1. Consequently, if we
choose T* < min(Ty,T), then the operator G is a contraction in the ball ®7 (¢o, p). However, in accordance with the
Banach theorem, the operator G has a unique fixed point in the ball ®7 (¢o,p), i.e., there exists a unique solution of
equation (38). Theorem 1 is proven.

Estimation of the time of the local existence. According to (19), (28) and (32) and (41) T* must satisfy this
approximation

() = 27)\-4,
Tt <inf[(55)“ (Aikin (550) Ak (1)

(l,%kln(zcﬂ(%w))é]

to ensure the existence of the solution on [0, T] for each T < T*, here ||¢q|| = M
Convergence of the solution series (9). As it was proved, in view of (A1)-(A5), the coefficients ug(t),un,—1(f) and
Uz, (t); n > 1 are bounded in C[0, T']. Thus, the series expression (6) of u(x,r) gives

Sl[lp] (1) = |u(r)] < 2[uo(r)[+4 Y |ua—1(t)] +4 Y [u2a(t)]- (43)
x€(0,1 n=1 n=1

(A1)-(A3) imply that ¥ n3|as,_1], ¥ n3|fon1l, ¥ n?|fou| and ¥ n?|as,| are convergent. In consequent, by (27)
n=1 n=1 n=1 n=1

and (30) the series u(x,?) and its pa;tial derivative uy(x,t) are uniformly convergent in [0, 1] x [e,T] for any € >

0. Therefore, u(x,-) and wuy(x,-) are in C[0,T] for x € [0,1]. Also, its second partial derivative uy(x,#) is uni-

formly convergent in [0,1] x [¢,T] for any € > 0 by the Cauchy-Schwartz inequality and the Bessel’s inequality
(4)

a2 (2)
in view of the fact that ay,_| = “z}gl and f5, 1 = fz)’z4 R /lzng and f>, = fi’é . Then, the uniformly conver-
gence of Z i up, 1(2), Z n uzn( ) obtained from (14), (15) and (16). Besides, under the conditions (A2)- (A5),
n=1 n=1
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the fractional derivative (9%u)(x,?) and u(x,t) are uniform convergent in [0, 1] x [¢,T]. Thus, u(x,t) € C>%[0,1] x
(0,7]NC([0,1] x [0,T]) and satisfies the conditions (2), (3) for arbitrary ¢(t) € C[0,T].
Step 5: Uniqueness of the solution (u(x,?),q()). Assume that the pairs of functions (u(x ,t) q(t)) and (v(x,t),b(t))

are solutions of the inverse problem (1)-(5). Let us use the product Banach space[ T ] endowed with its norm to

prove the uniqueness of the solutions under this form (uq(t),u2,—1(t),u2(t),4(t)) € [C[O ,T]] . We have

(o (1), uan—1(¢), 120 (1), (1)) = (v (1), v2n—1 (1), v2u (1), b(t ))H[

cpo,T ]

< max(Wo, W1, Wy)ll (uo(1), uzn—1(1),u22(1),q(1)) = (vo(£),v20-1(1),v2(1),b(1)) | lcpor]’

In view of (19), (28) and (41)
| (w0 (2), uzn—1(2),u2n(2), (1)) — (vo(t),van—1(2),v2n(t), ))ll[ 0t

This implies that u(x,7) = v(x,#) and g(¢) = b(¢t) , t € [0,T]. This completes the proof.

CONTINUOUS DEPENDENCE ON THE DATA

Theorem 2. Under assumptions (Al)-(A5), the solution {u(x,t),q(t)} of the problem (1)-(4) depends continuously
upon the data of 1k, £ (x,1),a(x), g(1), B(6), B(r), i = 1,2.

The theorem is proved similar to [3].

CONCLUSION

The inverse problem regarding the simultaneous identification of the diffusion coefficient and time-dependent source
control coefficient with the temperature distribution in a one-dimensional sub-diffusion equation with nonlocal bound-
ary and two integral over-determination conditions has been considered. The nonlocal boundary conditions, the
Caputo fractional derivative and the control coefficient made our problem more difficult. The conditions for the exis-
tence, uniqueness and continuous dependence upon the data of the problem have been established by using the Fourier
method with some bi-orthogonal system, an associated Caputo fractional derivative which contains an initial data and
the Banach fixed point theorem for a product of Banach spaces.
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