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Qualitative analysis of strictly non-Volterra quadratic dy-
namical systems with continuous time

Xaydar Raupovich Rasulov

Abstract. In this article, a continuous analogue of strictly non-Volterra quadratic
dynamical systems with continuous time and points of equilibrium is investigated,
a phase portrait of the system is constructed, numerical solutions are found, and a
comparative analysis is carried out with a particular solution of the system.

1 Introduction

The main theoretical and practical studies on the study of the dynamics of a free
population, various problems of physics and economics are reduced to dynamic systems.
In this, a special role is played by the quadratic stochastic operators. In this regard,
quadratic operators attract the attention of specialists in various fields of mathematics
and its applications (see for example [2], [21]). Therefore, studies of quadratical stochastic
operators remain relevant.

The concept of a quadratic stochastic operator was first formulated in the article [2].
S. Ulam [21] posed the problem of studying the behavior of the trajectories of quadratic
stochastic operators. This problem is mainly solved for Volterra operators (see [5], [6],
[7], [8], [14], [4]) of discrete time. In [19], a definition of strictly non-Volterra quadratic
stochastic operators is introduced, which is a subclass of non-Volterra operators. But the
class of non-Volterra operators has been little studied.

Depending on the problem, either continuous time can be considered (when the states
of the system are of interest at each moment), or discrete (when the states of the system are
of interest at separate isolated moments of time). System behavior depends on parameters,
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the exact values of which are often unknown. It is fundamentally impossible to solve such
problems numerically for all possible parameter values. Therefore, methods are needed
that will make it possible to analyze the behavior of solutions to a dynamical system
without using a computer.

As we noted above, quadratic stochastic operators of the Volterra class in discrete time
have been studied quite deeply. Here are some of them [17], [9], [12], [13], [18]. Also,
quadratic stochastic operators with continuous time, that is, various modifications of the
predator and prey model and other models, have been studied by many authors in [1], [19]
and [10].

In turn, the class of strictly non-Volterra quadratic stochastic operators with continuous
time (hereinafter referred to as quadratic dynamical systems) has been studied relatively
less. Since there is no general theory studying such operators. Note the works [16].

The most useful aspect of the qualitative theory of dynamical systems, be more correct,
dynamical systems with continuous time, is that many important properties of solutions
can be predicted in advance without having explicit solutions of the equations.

In this article, we study a qualitative analysis of a quadratic dynamical system, a
continuous analogue of the non quadratic stochastic Volterra operator from [15]. The
system is shown to come to a simple differential equation, solutions are found, and they
are studied separately. Equilibrium points of the system are found and a phase portrait is
given.

Analytical solutions of the basic system in some assumptions have been found. In
contrast to the results of the study of discrete time dynamic systems, the trajectory of the
solutions is a clearly expresses of the aspiration to the equilibrium point at an exponential
speed. With the help of computer calculations, numerical solutions were compared with
analytical solutions, graphs were drawn, and trajectories were found to overlap over time.

2 Formulation of the problem

In this article, we study a continuous analogue of one quadratic stochastic operator
from [15], which in our case has the form:

ẋ0 = 1
2
x21 + 1

2
x22 + 2x1x2 − x0 = f0(x0, x1, x2),

ẋ1 = 1
2
x20 + 1

2
x22 + 2x0x2 − x1 = f1(x0, x1, x2),

ẋ2 = 1
2
x20 + 1

2
x21 + 2x0x1 − x2 = f2(x0, x1, x2)

(1)

or in vector form ẋ(t) = f(x(t)), where x(t) = (x0(t), x1(t), x2(t)), is the state of some
system at the instant of continuous time at t ≥ 0, x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and
x0(t) + x1(t) + x2(t) = 1.

3 Main results

Adding all the equations of system (1) and denoting x0 + x1 + x2 = X we obtain an
ordinary differential equation

X
′
= X2 −X, (2)
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which is a type with shared variables.
Equation (2) has the following solution:

X =
1

1− Cet
, (3)

where C = const 6= 0. For a fixed negative C, formula (3) gives one solution located in the
line 0 < X < 1. For a fixed positive C, formula (3) defines two solutions, one of which,
defined on the interval −∞ < t < −lnC, is located in the half-plane X > 1, and the other,
defined on the interval −lnC < t < +∞, is located in the half-plane X < 0. In addition
to solutions located in these regions indicated above, equation (2) has two more solutions
X ≡ 0 and X ≡ 1, which are formally obtained from (3) with C = 0 and C =∞.

This means that the phase portrait of equation (2) consists of five phase curves: two
singular points 0 and 1, two rays (−∞, 0) and (1,+∞), and an interval (0, 1). Here, the
point X = 0 is stable, and the point X = 1 is an unstable equilibrium.

Let’s take a look at each solution separately. Let us show that only one solution X = 1
corresponds to the considered system (1).

So, X = 0 i.e., x0 + x1 + x2 = 0. From here, we find x0 = −x1 − x2 and put on the
second and third equations of system (2)

ẋ0 = 1
2
x21 + 1

2
x22 + 2x1x2 − x0,

ẋ1 = 1
2
x21 − x22 − x1x2 − x1,

ẋ2 = −x21 + 1
2
x22 + 2x1x2 − x2.

(4)

After some transformations of the second and third equations of system (4), we obtain
an ordinary Abel differential equation of the second kind with respect to x1, which does
not admit a solution in quadratures [11],[20], [22]. Hence we can say that system (4) in
the general case has no solution in the analytical form.

Definition 3.1. Equilibrium positions of system (1) are such points x∗(t) of the phase
space, which f(x∗(t)) = 0. Obviously, x∗(t) is a solution of system (1), since ẋ∗ = 0 .

System (4) has 4 equilibrium points: N1(0, 0, 0), N2(
4
3
,−2

3
,−2

3
), N3(−2

3
,−2

3
, 4
3
) and

N4(−2
3
, 4
3
,−2

3
), of which only N1 is located on the border of the first octant. If x0(t) ≥ 0,

x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1, for all t ≥ 0, then the solution X = 0
cannot describe the original problem.

Although, the solution of the system located in the line 0 < X < 1

X =
1

1− Cet

for a fixed negative C satisfies the condition for t ≥ 0, x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0, but
does not satisfy the condition x0(t) + x1(t) + x2(t) = 1. And the solution of the system
located on the lines X < 0 and X > 1 does not satisfy any condition which, for t ≥ 0,
x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1.
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We can conclude that only one solution X ≡ 1 of equation (2) describes the considered
problem (1).

From the condition x0(t) + x1(t) + x2(t) = 1 we find x2 = 1 − x0 − x1 and assuming
the first and second equations of system (1) we get:

ẋ0 = 1
2
x20 − x21 − x0x1 − 2x0 + x1 + 1

2
,

ẋ1 = −x20 + 1
2
x21 − x0x1 + x0 − 2x1 + 1

2
,

ẋ2 = 1
2
x20 + 1

2
x21 + 2x0x1 − x2.

(5)

By substitution, the first two equations of the system (5){
3x0 + 3x1 = v0,

x0 − x1 = v1,

are reduced to the system of equations:{
v
′
0 = 3

4
v21 − 1

4
v20 − v0 + 3,

v
′
1 = 1

2
v0v1 − 3v1.

Finding v0 and, accordingly, v
′
0 from the second equation of this system and substituting

into the first equation and setting v
′
1 = Y, v

′′
1 = Y Y

′
, we obtain the Abel equation of the

second type:

v1Y Y
′
=

1

2
Y 2 − 4v1Y +

3

8
v41 − 6v21,

which does not admit a solution by quadratures [11],[20], [12]. Hence we can say that
system (1) in the general case has no solution in the analytical form. Below, we show
that system (1), under some assumptions about x0(t), x1(t), x2(t) admits solutions in
quadratures.

We find the equilibrium positions of system (1), that is, consider the equation f(x) = 0.
1
2
x21 + 1

2
x22 + 2x1x2 − x0 = 0,

1
2
x20 + 1

2
x22 + 2x0x2 − x1 = 0,

1
2
x20 + 1

2
x21 + 2x0x1 − x2 = 0.

This system has 8 points of equilibrium position: M1(0, 0, 0), M2(
1
3
, 1
3
, 1
3
), M3(−1,−1, 3),

M4(−2
3
,−2

3
, 4
3
), M5(−1, 3,−1), M6(3,−1,−1), M7(−2

3
, 4
3
,−2

3
) and M8(

4
3
,−2

3
,−2

3
), where c

is an arbitrary constant.
Considering the conditions of the problem x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and

x0(t) +x1(t) +x2(t) = 1, then we obtain a single point of equilibrium position M2(
1
3
, 1
3
, 1
3
),

corresponding to system (1).
Let us investigate the stability of the solution at the point M2(

1
3
, 1
3
, 1
3
) of system (1).

We calculate at the point M2 the Jacobian:

A =


∂f0
∂x0

∂f0
∂x1

∂f0
∂x2

∂f1
∂x0

∂f1
∂x1

∂f1
∂x2

∂f2
∂x0

∂f2
∂x1

∂f2
∂x2


M2(

1
3
, 1
3
, 1
3
)

=

−1 1 1
1 −1 1
1 1 −1

 ,
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where det|A| = 4 6= 0. Linearized system (1) has the following form:
x
′
0 = −x0 + x1 + x2 − 1

3
,

x
′
1 = x0 − x1 + x2 − 1

3
,

x
′
2 = x0 + x1 − x2 − 1

3
.

(6)

Assuming u = x0 − 1
3
, v = x1 − 1

3
, w = x2 − 1

3
, we get

A =


u
′
= −u+ v + w,

v
′
= u− v + w,

w
′
= u+ v − w.

(7)

Here, the corresponding matrix is

−1 1 1
1 −1 1
1 1 −1

, its determinant is detA = 4 6= 0,

and its eigenvalues are λ1,2 = −2, λ3 = 1. This means that the point of equilibrium
position M2 is an unstable rest point.

Let n+, n0, n−− be the number of eigenvalues of A (taking into account their multiplic-
ity) with positive, equal to zero and negative real parts, respectively (see [3]).

Definition 3.2. The equilibrium position of the dynamical system (7) is called hyperbolic
if n0 = 0, that is, there are no eigenvalues located on the imaginary axis. A hyperbolic
equilibrium is called a hyperbolic saddle if n+n− 6= 0. Hence, on the other hand, the
equilibrium position M2 is a hyperbolic saddle. The general solution of system (6) has the
form: 

x0 = 1
3
− (C0 + C1)e

−2t + C2e
t,

x1 = 1
3

+ C0e
−2t + C2e

t,

x2 = 1
3

+ C1e
−2t + C2e

t,

(8)

where C0, C1, C2 = const.

If x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1, then we have to put
C2 = 0 and the solution will look like:

x0 = 1
3
− (C0 + C1)e

−2t,

x1 = 1
3

+ C0e
−2t,

x2 = 1
3

+ C1e
−2t.

(9)

It follows that, as t → +∞ the solution of system (5) (x0(t), x1(t), x2(t)) tends to the
point M2(

1
3
, 1
3
, 1
3
) exponentially fast.

There are two constants in (9) that cannot uniquely determine the solution to the
Cauchy problem for system (6). If we put x1(t) = x2(t), then the Cauchy problem for
system (6) has a unique solution.
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In studying the Cauchy problem for equation (1), proceeding from the above, we assume
x1(t) = x2(t). Substituting x0 = 1−x1−x2 into the second and third equations of system
(1), we obtain: 

ẋ0 = 1
2
x21 + 1

2
x22 + 2x1x2 − x0,

ẋ1 = 1
2
x21 − x22 − x1x2 − 2x1 + x2 + 1

2
,

ẋ2 = −x21 + 1
2
x22 − x1x2 + x1 − 2x2 + 1

2
.

(10)

Assume x1 = x2 = v. Then the second and third equations take the form:

v
′
= −3

2
v2 − v +

1

2
. (11)

The phase portrait of equation (11) consists of five phase curves: two singular points
v = −1 and v = 1

3
, two rays (−∞,−1) and (1

3
,+∞) and an interval (−1, 1

3
). Here, the

point v = −1 is stable, and the point v = 1
3

is an unstable equilibrium.
We solve equation (11) and put the solution in the first equation of system (10). Con-

sidering x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1, we find the general
solution of the system (10). The solution of system (10) in the line 0 < x1(t), x2(t) <

1
3

has the following form: 
x0 = 1

3
+ 8Ce−2t

3(3+Ce−2t)
+ C2e

−t,

x1 = 1−Ce−2t

3+Ce−2t ,

x2 = 1−Ce−2t

3+Ce−2t ,

(12)

and in the line 1
3
< x1(t), x2(t) < 1

x0 = 1
3
− 8Ce−2t

3(3−Ce−2t)
+ C3e

−t,

x1 = 1+Ce−2t

3−Ce−2t ,

x2 = 1+Ce−2t

3−Ce−2t ,

(13)

where C,C2, C3 = const.
From (12) and (13) we obtain, respectively, that x0(t) + x1(t) + x2(t) = 1 + C2e

−t and
x0(t) + x1(t) + x2(t) = 1 +C3e

−t. Hence it follows that the sum x0(t) + x1(t) + x2(t) tends
to unity exponentially fast as t → +∞, and not separately (see [15]). Now, consider the
case when x0(t) = x1(t) = x2(t) = X. Substituting this in (2), taking into account the
invariance of the equations of the system, we obtain the ordinary differential equation

X
′
= 3X2 −X, (14)

which is of the shared variable type too. As above, it can be shown that equation (14) has
the following solution:

X =
1

3− Cet
, (15)

where C = const 6= 0. For a fixed negative C, formula (15) gives one solution located in the
line 0 < X < 1

3
. For a fixed positive C, formula (15) defines two solutions, one of which,
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defined on the interval −∞ < t < ln 3
C

, is located in the half-plane X > 1
3
, and the other,

defined on the interval ln 3
C
< t < +∞, is located in the half-plane X < 0. In addition to

solutions located in these regions indicated above, equation (14) has two more solutions
X ≡ 0 and X ≡ 1

3
, which are formally obtained from (15) with C = 0 and C =∞.

The phase portrait of equation (14) consists of five phase curves: two singular points
0 and 1

3
, two rays (−∞, 0) and (1

3
,+∞) and an interval (0, 1

3
). Here, the point X = 0 is

stable, and the point X = 1
3

is an unstable equilibrium.
Taking into account, x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t)+x1(t)+x2(t) = 1, as

above, we obtain that in this case x0(t) = x1(t) = x2(t) = 1
3
, i.e. the considered dynamical

system is at rest.
As mentioned above, we failed to find an analytical solution to the Cauchy problem for

the system (1) in the general case. In this regard, with the help of the MathCAD program,
solutions of the Cauchy problem for system (1) were found and the phase portrait of the
trajectory (with an accuracy of 0.001) was compiled in fig. 1,2. The phase portrait of
system (1) is as follows:

Figure 1: Initial conditions x0(0) = 0.5, x1(0) = 0.25, x2(0) = 0.25, Z = (x2, x1, x0) (in the
line 0 < x1(t), x2(t) <

1
3
, x1(t) = x2(t)).
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Figure 2: Initial conditions x0(0) = 0.2, x1(0) = 0.4, x2(0) = 0.4,Z = (x2, x1, x0) (in the
line 1

3
< x1(t), x2(t) < 1, x1(t) = x2(t)).

Also, for cases where x1(t) = x2(t) and 0 < x1(t), x2(t) <
1
3

and 1
3
< x1(t), x2(t) < 1

compared solutions of system (1), calculated using the MathCAD program with (12) and
(13), respectively (fig. 3-6).

To compare the numerical and analytical solutions (12) and (13) on the graph, we de-
note by x0(t), x1(t), x2(t) numerical solutions, and by y(t), u(t) and w(t) analytic solutions
from (12) and (13), respectively.

As a result of the research, it was found that the difference between the numerical
solutions (1) and (12), (13) does not exceed 0.001, and for t ≥ 4, the numerical and
analytical solutions almost coincide and together tend to the rest point M2(

1
3
, 1
3
, 1
3
).
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Figure 3: The graph of the numerical solution of system (1) with the initial conditions
x0(0) = 0.5, x1(0) = 0.25, x2(0) = 0.25 (in the line 0 < x1(t), x2(t) <

1
3
, x1(t) = x2(t)),

Figure 4: Graph of function (12), solution of system (10) with initial values y(0) = 0.5,
u(0) = 0.25, w(0) = 0.25.
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Figure 5: Graph of comparison of the numerical solution of system (1) x0(t) and analytical
solutions (12) y(t) with the same initial values.

Figure 6: Comparison graph of the numerical solution of system (1) x1(t) and the analytical
solution (12) w(t).

A similar picture takes place when comparing the solution of system (1) with analytical
solutions (13) in the line 1

3
< x1(t), x2(t) < 1, x1(t) = x2(t)), with the same initial

conditions.
Thereby, the following theorem has been proved.
Theorem. System (1) with the conditions t ≥ 0, x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and

x0(t) + x1(t) + x2(t) = 1 has a unique fixed point (1
3
, 1
3
, 1
3
), which is a hyperbolic saddle.

In addition, the solution (12) and (13) of system (10) exponentially tends to the solution
of the system (1).

The results of this paper show that the dynamics of an analogue of strictly non-Volterra
operators with continuous time is much richer than the dynamics of non-Volterra operators
with discrete time (see [15]). This is also seen from the phase portrait of system (1), which
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consists of five curves. It was found that x0(t), x1(t), x2(t) tends to the equilibrium point
M2(

1
3
, 1
3
, 1
3
) according to formulas (12) and (13), and the sum x0(t) + x1(t) + x2(t) tends

to unity exponentially fast as t→ +∞.
In addition, in the absence of conditions

x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1,

the trajectory defined by system (1) in overall, has several curves.
Each strictly non-Volterra quadratic operator is an interesting example in the theory

of multidimensional nonlinear dynamical systems with various trajectory behavior.
A comparative analysis of the results obtained in [15] and in the present paper shows

that the equilibrium positions of system (1) coincide with the fixed point of the operator
[15] only when x0(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0 and x0(t) + x1(t) + x2(t) = 1 and both of
these trajectories tend to the equilibrium position exponentially fast.

In addition, we can say that considering an analog of a quadratic operator (studied in
[15]) with continuous time gives some advantage. Since it has been established that on the
basis of computer calculations it can be said that for t ≥ 4 solutions of system (1) obtained
using MathCAD (more than 100 solutions with different initial values are calculated and
compared) coincide with the solutions obtained analytically (12) and (13).

The author thanks prof. U.A. Rozikov for useful discussions.
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