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Abstract. In this paper, the existence of a generalized solution of the investigated boundary-value problem for a nonlinear equation 
of mixed type with two lines of degeneration in the weighted S. L. Sobolev space is proved. A particular case of an equation is 
given, in which a generalized solution exists in a weightless S. L. Sobolev space. Examples of functions, satisfying the conditions 
of the lemmas and theorems on the solvability of the problem, are constructed.

INTRODUCTION. FORMULATION OF THE PROBLEM

Relatively few works have been devoted to boundary-value problems for nonlinear equations of mixed type. In all 
these works, the considered region, where the equation belongs to the hyperbolic type, consists of a characteristic 
triangle [1, 2, 3, 4].

In this paper, a boundary-value problem in a domain with deviation from the characteristic for one nonlinear equa-

tion of mixed type with two lines of degeneracy is studied.
Consider the equation

T (U)≡ K(y)Uxx +N(x)Uyy +C(x,y)U = f (x,y,U) (1)

in the domain Ω on the plane of variables (x,y), bounded by x > 0, y > 0 a smooth curve σ with ends at the

points A(1,0) and B(0,1), and by x > 0, y < 0 (x < 0,y > 0) — the characteristics of the equation OD1(OC1) and

smooth curves D1A(BC1) lying inside the characteristic triangle ODA (OBC), respectively. Here, K(y), N(x), C(x,y),
f (x,y,U) — are given functions, and K(t) � 0, N(t) � 0 where t � 0, OD, DA and OC, CB characteristics of the

equation outgoing from points O(0,0), A(1,0) and O(0,0), B(0,1), respectively. Let ΓD1A∪σ ∪BC1.
Suppose the given functions K(y), N(x), C(x,y) are continuously differentiable and satisfy the conditions N′(x) ≥

α|N(x)|, K′(y)≥ α|K(y)|, C(x,y)
∣∣
C1D1

≤ 0, Cx(x,y)+Cy(x,y)≤−m < 0 in Ω, where α , m = const > 0.

Problem T. Find a solution U(x,y) of the equation (1) in the domain Ω, so that

U(x,y)
∣∣
Γ
= 0. (2)

EXISTENCE OF A GENERALIZED SOLUTION OF THE PROBLEM

Consider function spaces: U(Ω) = {U : U ∈C∞(Ω),U
∣∣
Γ
= 0}, V (Ω) = {V : V ∈C∞(Ω),V

∣∣
∂Ω

= 0}.

Denote by H1(Ω) and H∗
1 (Ω) the closure in the norm of the function spaces U(Ω) and V (Ω), respectfully:

‖U‖H1(Ω) =

⎛⎝∫
Ω

(
|K(y)|U2

x + |N(x)|U2
y +U2

)
dΩ

⎞⎠1/2

,

‖V‖H∗
1 (Ω) =

⎛⎝∫
Ω

(
|K(y)|V 2

x + |N(x)|V 2
y +V 2

)
dΩ

⎞⎠1/2

.

Definition 1 A generalized solution of the problem (1), (2) is a function U(x,y) ∈ H1(Ω), satisfying the identity

B(U,V)≡−

∫
Ω

(K(y)UxVx +N(x)UyVy −C(x,y)UV )dΩ =

∫
Ω

f (x,y,U)V dΩ
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for any function V (x,y) ∈ H∗
1 (Ω).

Lemma 1 Assume

a) {ψn(x,y)}n∈N — is a complete system of smooth functions in the space H∗
1 (Ω), belonging to V (Ω);

b) −n1 + n2 ≥ 0 on C1O; n1 − n2 ≥ 0 on OD1; n1 + n2 ≥ 0 on C1D1;

c) n1 + n2 < 0 on Γ, where (n1,n2) — the inner normal vector.

Then there are functions {ϕn(x,y)}n∈N ∈ H1(Ω), that are also solutions of the following boundary-value problem:

l(ϕn)≡ ϕnx(x,y)+ϕny(x,y) = ψn(x,y), ϕn(x,y)|Γ = 0, n ∈ N. (3)

Note that the condition n1 +n2 < 0 on Γ means lines y = x+C, can not intersect the curve Γ twice, where C = const.

Proof. The characteristics of equation (3) due to condition c) cannot intersect the curve Γ twice. {ψn(x,y)}n∈N —

smooth functions, then the solution of this boundary-value problem (3) exists and is a smooth function, excluding,

perhaps, points (1,0) and (0,1).
In new independent variables ξ = (x+y)/2, η = (x−y)/2 of this boundary-value problem (3) take the form (omit

the subscripts n):

ϕξ = ψ , ϕ
∣∣
Γ̃
= 0,

where Γ̃ — the image of the curve Γ on the plane (ξ ,η).
Returning to the old variables (x,y), the solution of the problems has the form:

ϕ(x,y) =

(x+y)/2∫
χ((x−y)/2)

ψ (t +(x− y)/2, t− (x− y)/2)dt ≡ I(ψ),

where x+ y = 2χ ((x− y)/2) is an equation of the curve Γ. Now let us prove that {ϕn(x,y)}n∈N ∈ H1(Ω).
Denote by Ω0 = Ω∩{(x,y) : x > 0,y > 0}, Ω1 = Ω∩{(x,y) : x > 0,y < 0} and Ω2 = Ω∩{(x,y) : x < 0,y > 0}.

Cut out a part of the circle centered at points (1,0) and (0,1) of small radius ε > 0 from the domain Ω0. The

remaining part of the domain denote by Ωε
0 = (Ω∩{(x,y) : x > 0,y > 0}) \

(
S1ε ∪S2ε

)
, where S1ε = {(x,y) : (x−

1)2 + y2 < ε2}, S2ε = {(x,y) : x2 +(y− 1)2 < ε2}.
By the smoothness of the function ϕn(x,y) and the equality l(ϕn) = ψn, the following integral can be integrated

(omitting the index n):

2

∫
Ω0

I(ψ)T (ψ)dΩ = 2

∫
Ω0

ϕT (l(ϕ))dΩ = 2 lim
ε→0

∫
Ωε

0

ϕT (l(ϕ))dΩ. (4)

Integrating by parts and using the following identities:

2K(y)ϕxxl(ϕ) = K′(y)ϕ2
x +

(
K(y)ϕ2

x

)
x
+(2K(y)ϕxϕy)x

−
(
K(y)ϕ2

x

)
y
,

2N(x)ϕyyl(ϕ) = N′(x)ϕ2
y −

(
N(x)ϕ2

y

)
x
+(2N(x)ϕxϕy)y

−
(
N(x)ϕ2

y

)
y
,

2C(x,y)ϕ l(ϕ) =−(Cx(x,y)+Cy(x,y))ϕ2 +
(
C(x,y)ϕ2

)
x
+
(
C(x,y)ϕ2

)
y
,

and using Green’s formula, the integral on the right-hand side of the equality (4) takes the form:

2

∫
Ωε

0

ϕT (l(ϕ))dΩ =
∫

Ωε
0

ΠdΩ+

1−ε∫
0

(
N(x)ϕ2

y − 2N(x)ϕψy

)
dx

+

1−ε∫
0

(
K(y)ϕ2

x − 2K(y)ϕψx

)
dy+

∫
∂Ωε

0\((x=0)∪(y=0))

Pdx+Qdy
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−

∫
∂Ωε

0

C(x,y)ϕ2(n1 + n2)dS,

where

Π = K′(y)ϕ2
x +N′(x)ϕ2

y − (Cx(x,y)+Cy(x,y))ϕ2,

P = K(y)ϕ2
x − 2N(x)ϕxϕy −N(x)ϕ2

y − 2N(x)ψϕy + 2N(x)ϕψy,

Q = K(y)ϕ2
x + 2K(y)ϕxϕy −N(x)ϕ2

y + 2K(y)ϕψx − 2K(y)ψϕx.

Similarly, cut out a part of the circle centered at points (1,0) and (0,1) of small radius ε > 0 from the domains

Ω1 and Ω2, respectively. The remaining part of domains denote by Ωε
1 = Ω1\S1ε and Ωε

2 = Ω2\S2ε , and consider the

integrals:

Iε
1 = 2

∫
Ωε

1

ϕT (l(ϕ))dΩ and Iε
2 = 2

∫
Ωε

2

ϕT (l(ϕ))dΩ.

Given the equality −
√
−K(y)dy =

√
N(x)dx on OD1, the right-hand side of integral Iε

1 can be rewritten as

2

∫
Ωε

1

ϕT (l(ϕ))dΩ =
∫

Ωε
1

ΠdΩ−

1−ε∫
0

(
N(x)ϕ2

y − 2N(x)ϕψy

)
dx

−

∫
OD1

[√
−K(y)ϕx −

√
N(x)ϕy

]2

(dx+ dy)+ 2

∫
OD1

ϕdmψ −ψdmϕ

+

∫
(y<0)∩(∂S1ε∪D1A′

ε )

Pdx+Qdy−

∫
∂Ωε

1

C(x,y)ϕ2(n1 + n2)dS,

where A′
ε is the intersection point of the curve D1A with the curve ∂S1ε and the right-hand side Iε

2 as

2

∫
Ωε

2

ϕT (l(ϕ))dΩ =

∫
Ωε

2

ΠdΩ−

1−ε∫
0

(
K(y)ϕ2

x − 2K(y)ϕψx

)
dy

+

∫
C1O

[√
K(y)ϕx −

√
−N(x)ϕy

]2

(dx+ dy)+ 2

∫
C1O

ϕdmψ −ψdmϕ

+
∫

(x<0)∩(∂S2ε∪B′
εC1)

Pdx+Qdy−
∫

∂Ωε
2

C(x,y)ϕ2(n1 + n2)dS,

where B′
ε is the intersection point of the curve C1B with the curve ∂S2ε .

Note that on the part Γε of the curve Γ where n1 +n2 < 0, ϕx +ϕy is the nontangential derivative, which, due to the

condition ψ |Γ = 0, is equal to zero together with the function ϕ . Therefore, ϕx = ϕy = 0 is on Γε .
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Taking this into account and conditions b), c) of Lemma 1 adding integrals Iε
0 , Iε

1 , Iε
2 discarding non-negative terms

and calculating the limits at ε → 0

2

∫
Ω

ϕT (ψ)dΩ ≥ β

∫
Ω

(
|K(y)|ϕ2

x + |N(x)|ϕ2
y +ϕ2

)
dΩ = β‖ϕ‖2

H1(Ω), (5)

where β = min(α,m) is obtained.

Integrating the left-hand side of (5) by parts and using inequality Hölder’s ( [5], p. 11) and inequality Cauchy ( [6],

p. 67) with ε

ab ≤
ε

2
a2 +

1

2ε
b2, a,b ≥ 0,

we get

2

∫
Ω

ϕT (ψ)dΩ ≤C1ε‖ϕ‖2
H1(Ω) +

C1

ε
‖ψ‖2

H∗
1 (Ω) (6)

is derived where C1 = max
(
1,max |C(x,y)| in Ω

)
.

Choosing ε small enough, from (5) and (6) find ‖ϕ‖2
H1(Ω) ≤ C2‖ψ‖2

H∗
1 (Ω), where C2 depends on α, m, C1 and ε .

Hence it follows that ‖ϕn‖
2
H1(Ω) ≤C2‖ψn‖

2
H∗

1 (Ω), and ϕn(x,y) ∈ H1(Ω), n ∈ N.

Theorem 2 Suppose the conditions of Lemma 1 are satisfied, and the function f (x,y,U) is continuous for U and

f (x,y,U) = |K(y)N(x)|1/2 f1(x,y,U), where ‖ f1(x,y,U)‖L2(Ω) ≤ const is uniform in U for any U from the ball

‖U‖L2(Ω) ≤ const.
Then there exists a generalized solution of the problem T from the class H1(Ω).

Proof. First of all, note that the system of functions {ϕn(x,y)}n∈N is independent and can be considered normalized (

[7], p. 159, [4]) so that

(ϕi,ϕ j)H1(Ω) ≡

∫
Ω

(|K(y)|ϕixϕ jx + |N(x)|ϕiyϕ jy +ϕiϕ j)dΩ = δi j,

where

δi j =

{
1 for i = j,
0 for i �= j.

Seek an approximate solution to the boundary value problem Tin the form

Ur(x,y) =
r

∑
i=1

Cirϕi(x,y) ∈ H1(Ω), r ∈ N,

where Cir are determined from the system

B(Ur,ψ j) =
∫
Ω

f (x,y,Ur)ψ jdΩ, j = 1,2, . . . ,r. (7)

Multiplying (7) by Cjr summing over j from 1 to r.

B(Ur, l(Ur)) =
∫
Ω

f (x,y,Ur)l(Ur)dΩ

are drawn.

By analogous reasoning as in the proof of Lemma 1, find ‖Ur‖H1(Ω) ≤ const, r ∈ N.
Therefore, there exists a subsequence ( [8], p. 83) (denote it again by Ur) and a function U(x,y) ∈ H1(Ω) such that
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Ur(x,y)→U(x,y) is weak in H1(Ω).

It follows that in the linear terms on the left in (7), it is possible to pass to the limit:

−

∫
Ω

(K(y)Urxψ jx +N(x)Uryψ jy −C(x,y)Urψ j)dΩ −→ [r → ∞]

−

∫
Ω

(K(y)Uxψ jx +N(x)Uyψ jy −C(x,y)Uψ j)dΩ.

By the condition of the Theorem 2 and the lemma ( [9], p. 25)

f (x,y,Ur)→ f (x,y,U) is weak in L2(Ω).

This implies that U(x,y) — a generalized solution of the problem T.

To prove the solvability of the system (7). Put C = (C1r, ...Crr), A(C) = (A1(C), ...,Ar(C)).

A j(C) =−
r

∑
i=1

Cir

∫
Ω

(K(y)ϕixψ jx +N(x)ϕiyψ jy −C(x,y)ϕiψ j)dΩ

−
∫
Ω

f

(
x,y,

r

∑
i=1

Cirϕi

)
ψ jdΩ, j = 1,r.

The properties of the functions f (x,y,U), ϕi(x,y), ψ j(x,y), imply the continuity of A j(C). Using the orthogonality

of ϕi(x,y) and ψ j(x,y), the linear part (A(C),C) will give |C|2. By Lemma ( [10], p. 134) the system (7) has at least

one solution.

Note, that if K(y) = y, N(x) = x, then the problem T for the equation

T (U) = yUxx + xUyy +C(x,y)U = f (x,y,U) (8)

can be considered in the weightless space of S.L. Sobolev W 1
2 (Ω) ( [5], p. 60) and, in addition, some conditions of

Lemma 1 and Theorem 2 can be weakened.

Denote by W 1
2 (Ω) and W ∗1

2 (Ω) the closure in the norm ( [5], p. 60) of the function spaces U(Ω) and V (Ω),
respectively.

Definition 2 A generalized solution of the problem (8), (2) is a function U(x,y) ∈W 1
2 (Ω), satisfying the identity

B1(U,V )≡−

∫
Ω

(yUxVx + xUyVy −C(x,y)UV)dΩ =

∫
Ω

f (x,y,U)V dΩ

for any functions V (x,y) ∈W ∗1
2 (Ω).

Lemma 3 Assume

a) {ψn(x,y)}n∈N — a complete system of smooth functions in the space W ∗1
2 (Ω), belonging to V (Ω);

b) C(x,y) ∈C1(Ω), C(x,y)|C1D1
≤ 0, Cx(x,y)+Cy(x,y)≤ 0 in Ω;

c) n1 + n2 < 0 on Γ, where (n1,n2) — inner normal vector.

Then there are functions {ϕn(x,y)}n∈N ∈W 1
2 (Ω), which are solutions of the boundary-value problem

ϕnx(x,y)+ϕny(x,y) = ψn(x,y), ϕn(x,y)|Γ = 0, n ∈ N.

Lemma 3 is proved similarly to the proof of Lemma 1.

Theorem 4 Assume the conditions of Lemma 3 are satisfied and the function f (x,y,U) is continuous for U and

‖ f (x,y,U)‖L2(Ω) ≤ const is uniform in U from any U from the ball ‖U‖L2(Ω) ≤ const.

Then there exists a generalized solution to problem T for the equation (8) from the class W 1
2 (Ω).
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Theorem 4 is proved similarly to the proof of Theorem 2.

Example. If K(y) = signy|y|m, N(x) = signx|x|n, and m ≥ 1, n ≥ 1, α = 1/10, σ : x + y = 1, D1A : y = (x −

1)/(24/5 − 1), C1B : x = (y− 1)/(24/5 − 1), C(x,y) = −24− x− y, f (x,y,U) = |N(x)K(y)|1/2/(1+U2 +U4)4, then

the conditions b), c) of Lemma 1 and Theorem 2 are satisfied. Therefore, in this case, there exists a generalized

solution of the problem T for the equation (1).

Comment. The next example shows that under the conditions of Theorem 4, there may not be the unique solution.

Assume C(x,y)≡ 0,

f (x,y,U) =
[
(6y3 +6x3)(1− x− y)2+6(x2y3 + x3y2)

]
U1/3

−18(x2 + y2)U2/3, σ : x+ y = 1, D1A : y =
x−1

24/5 −1
, C1B : x =

y−1

24/5 −1
.

Then the problem (8), (2) has at least two solutions: U(x,y)≡ 0,

U(x,y) =

⎧⎨⎩ x3y3(1− x− y)3, for x > 0, y > 0,
0, for x > 0, y < 0,
0, for x < 0, y > 0.

CONCLUSION

In conclusion, if the function f (x,y) is linear, then the proposed method makes it possible to numerically solve the

problem T for the equation (1).
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