MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN

NATIONAL UNIVERSITY OF UZBEKISTAN

UZBEKISTAN ACADEMY OF SCIENCES V.I.ROMANOVSKIY INSTITUTE OF MATHEMATICS

FERGANA STATE UNIVERSITY

INTERNATIONAL ENGINEERING ACADEMY

ABSTRACTS

OF THE VII INTERNATIONAL SCIENTIFIC CONFERENCE CONFERENCE

MODERN PROBLEMS OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGIES AL-KHWARIZMI 2021

dedicated to the 100th anniversary of the academician Vasil Kabulovich Kabulov

15-17 November, 2021, Fergana, Uzbekistan

BOUNDARY VALUE PROBLEM IN A DOMAIN WITH DEVIATION FROM THE CHARACTERISTICS FOR ONE NONLINEAR EQUATION OF A MIXED TYPE

Rasulov Kh.

Bukhara Branch of the V.I.Romanovskiy Institute of Mathematics, Bukhara State University, Bukhara, Uzbekistan,

xrasulov71@mail.ru

Consider the equation

$$T(U) \equiv K(y)U_{xx} + N(x)U_{yy} + C(x,y)U = f(x,y,U),$$
(1)

where K(y), N(x), C(x, y), f(x, y, U) are given functions, when $K(t) \ge 0$ and $N(t) \ge 0$ for $t \ge 0$.

Let Ω be a finite simply connected convex domain on the plane of variables (x, y), bounded for x > 0, y > 0 by a smooth curve σ with endpoints at the points A(1,0) and B(0,1), for x > 0, y < 0 and with characteristics x < 0, y > 0.

$$OD_1: \int_0^x \sqrt{N(t)} dt + \int_0^y \sqrt{-K(t)} dt = 0 \quad \left(OC_1: \int_0^x \sqrt{-N(t)} dt + \int_0^y \sqrt{K(t)} dt = 0\right)$$

equation and smooth curves $D_1A(BC_1)$, lying inside the characteristic triangle ODA(OBC), respectively. Suppose that curves D_1A, σ and BC_1 satisfy the condition:

$$(n_1 + n_2)|_{D_1 A \cup \sigma \cup BC_1} < 0, \tag{2}$$

where (n_1, n_2) - internal normal vector to $\Gamma = D_1 A \cup \sigma \cup BC_1$.

Problem T. Find a solution U(x, y) of equation (1) in the domain Ω such that

$$U(x,y)\big|_{\Gamma} = 0. \tag{3}$$

Note that the classical solvability of boundary value problems for linear equations of mixed types with one and two lines of degeneration has been studied rather deeply. However, the generalized solvability of boundary value problems for quasilinear equations of mixed type has not been fully studied, since there is no general theory that can be applied to study such equations. Works in this direction one can see in [1].

In this article we study the existence of a generalized solution of problem **T** for equation (1) in the weighted space Sobolev S.L.. In addition, concrete functions K(y), N(x), C(x, y), f(x, y, U) and examples of the considered domain Ω that satisfy the conditions of the lemmas and theorems on the solvability of the problem **T** have been constructed.

Moreover, the existence of a generalized solution of the boundary value of problem \mathbf{T} for the equation

$$yU_{xx} + xU_{yy} + c(x,y)U = f(x,y,U),$$

in the weightless space Sobolev S.L. under weaker restricted on the given functions with c(x, y) and f(x, y, U).

Constructed an example which shows that under conditions of the theorem, the existence of a generalized solution of problem \mathbf{T} for equation (1) the solution can be non unique.

References

1. Aziz K. F. and Schneider M. The Existence of Generalized Solutions for a Class of quasi-linear Equation of Mixed Type // Journal of Math. anal. and applications. 1985. Vol. 107, Page. 425-445.

24. Islomov B., Abdullayev A. A NONLOCAL BOUNDARY VALUE PROBLEM OF THE BITSADZE-SAMARSKII TYPE WITH AN ANALOGUE OF THE FRANKL CONDITION FOR THE MIXED TYPE FOULTION OF SECOND KIND	126
25.Ismoilov A.I. ON THE DARBOUX PROBLEM FOR THE INHOMOGENEOUS	
GENERALIZED EULER - POISSON - DARBOUX EQUATION 26. Ismoilov M.Kh. CAUCHY PROBLEM FOR AN ITERATED AXISYMMETRIC	127
EQUATION OF HYPERBOLIC TYPE	128
27.Kadirkulov B.J., Jalilov M.A. AN INVERSE PROBLEM FOR A NONLOCAL MIXED-	
TYPE FRACTIONAL-ORDER EQUATION WITH THE HILFER OPERATOR	129
28. KATIIMOV E.T. ON A TIME-DEPENDENT INVERSE SOURCE PROBLEM FOR	190
20 Kanimov, Sh.T. Oninov, Sh.A. ON THE DIDICHLET DEODIEM FOR THE	130
BOUSSINESOLOVE EQUATION WITH SINGULAR COEFFICIENTS	131
30 Karimov Sh.T., Oripov D.D. ABOUT A METHOD OF CONSTRUCTION OF	101
TRANSMUTATION OPERATOR	132
31.Karimov K. T., Solijonov J. V. A SPECTRAL PROBLEM FOR A 3D ELLIPTIC	
EQUATION WITH SINGULAR COEFFICIENTS IN A QUARTER CYLINDER	133
32.Khaldjigitov A., Kalandarov A., Bekmuratov U., Turdalieva M. NUMERICAL	
SOLUTION OF THE COUPLED PROBLEM OF THERMAL ELASTICITY IN STRESS	134
33.Khasanov M. ¹ , Omonov Sh. ² MODIFIED KORTEWEG-DE VRIES EQUATION WITH A	
SELF-CONSISTENT SOURCE	135
34.Kholdarova I. J. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, ASSOCIATED	
WITH THE TRIPLE CONFLUENT HYPERGEOMETRIC FUNCTIONS	136
35. Khudayarov B.A., Turaev F.Zh., Abdullaev A., NUMERICAL MODELING OF	197
VISCOELASTIC PIPELINES VIBRATIONS CONSIDERING EXTERNAL FORCES 26 Kabilary Kb. M. A. DIDECT AND INVERSE EVDANSIONS FOR ONE DOUDLE	137
30. KODHOV KR. MI. A DIRECT AND INVERSE EXPANSIONS FOR ONE DOUBLE	190
37 Komilova N I EXPANSIONS FOR THE POCHHAMMER SVMBOL AND ITS	100
APPLICATION TO THE FINDING OF THE GENERALIZED SOLUTION OF THE CAUCHY	139
PROBLEM FOR THE DEGENERATED HYPERBOLIC EQUATION OF THE SECOND KIND	100
38. Mamajonov S.M. BOUNDARY VALUE PROBLEM FOR INHOMOGENEOUS FOURTH-	
ORDER EQUATION WITH MULTIPLE CHARACTERISTICS	140
39. Mamayusupov J.Sh MELLIN'S INTEGRAL TRANSFORM FOR THE FRACTIONAL-	
ORDER INTEGRO-DIFFERENTIAL OPERATOR	141
40. Melikuzieva D.M. BOUNDARY PROBLEM FOR AN EQUATION OF PARABOLIC TYPE	
OF FOURTH ORDER	142
41. Mukimov A. Sh. ASYMPTOTICS OF THE SOLUTION A SYSTEM OF THE SEMILINEAR	
HEAT CONDUCTION PROBLEM WITH ABSORPTION AND VARIABLE DENSITY AT A	143
CRITICAL PARAMETER 49. Murrinew 7 M Khankeldieur N.M. ON THE CAUCHY DOOD EM EOD A THIDD	
42. MUMINOV Z.M., KNAIKEIGIEVA N.M. ON THE CAUCHY PRODLEM FOR A THIRD-	144
43 Olimova D S Tuxtarov E KELDVSH PROBLEM FOR A MIXED TYPE EQUATION	144
WITH SINGULAR COEFFICIENTS IN A RECTANGLE	145
44.Pirmatov Sh. NECESSARY CONDITIONS OF THE SUMMABILITY OF SPECTRAL	110
DECOMPOSITIONS ASSOCIATED WITH A SINGULAR OF ELLIPTIC OPERATOR	146
45. Rafikov A.N., Ismoilov Z.M. A NONLOCAL PROBLEM FOR A MIXED ELLIPTIC-	
HYPERBOLIC EQUATION	147
46. Rakhimov D.G., Ahmadjonova D.D. REDUCTIONAL METHOD IN PERTURBATION	
THEORY OF GENERALIZED SPECTRAL E. SCHMIDT PROBLEM	148
47. Rasulov Kh. BOUNDARY VALUE PROBLEM IN A DOMAIN WITH DEVIATION FROM	
THE CHARACTERISTICS FOR ONE NONLINEAR EQUATION OF A MIXED TYPE	149
48. Ruziev M. Kh. ON A NON-LOCAL PROBLEM FOR MIXED TYPE EQUATION WITH	1 50
PARTIAL RIEMANN-LIQUVILLE FRACTIONAL DERIVATIVE	150
49. Samalov D. L., JUFAEV D. L., AKDAFOV A. KII. ON FURSULL PROBLEM IN DIFFERENTIAL CAME WITH INTEGRAL CONSTRAINTS OF DIFFEDENT TVDFS	151
DIFERENTIAL GAME WITH INTEGRAL CONSTRAINTS OF DIFFERENT TIFES.	101