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Abstract—For an equation of the mixed parabolic–hyperbolic type with a Bessel operator,
we study the inverse problem associated with the search for the unknown right-hand side. By
separation of variables, the problem is reduced to solving ordinary differential equations for the
coefficients of the Fourier–Bessel series expansions of the unknown functions in orthonormal
Bessel functions of the first kind and zero order. A criterion for the uniqueness and existence
of a solution of the problem is established.
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Direct and inverse problems for mixed type equations are not studied so well as similar problems
for classical equations. Nevertheless, such problems are relevant from the viewpoint of applica-
tions. For example, the electromagnetic field strength in a homogeneous medium satisfies the wave
equation in the case of low conductivity of the medium, but in the case of relatively high con-
ductivity, when the displacement currents can be neglected compared with conduction currents,
the electromagnetic field strength satisfies the heat equation [1, pp. 443–447 of the Russian edi-
tion]. Another example is given by the following phenomenon in gas dynamics: when modeling gas
motion processes in a closed channel with porous walls, the gas motion is described by the wave
equation in the channel and by the diffusion equation outside the channel [2, 3]. There are many
such examples.

Direct problems for mixed parabolic–hyperbolic type equations were studied in [4–8]. Inverse
problems of determining the right-hand side or the initial function in initial–boundary value prob-
lems for mixed parabolic–hyperbolic type equations in a rectangular domain were considered in
the papers [9–12], where criteria for the uniqueness and existence of solutions of inverse problems
were established based on the spectral method. In the present paper, we study direct and inverse
problems related to finding a solution of an initial–boundary value problem for mixed parabolic–
hyperbolic type equations and an unknown right-hand side of the equation in a cylindrical domain.
When studying the problem in question, we need the Bessel function and the conditions for the
convergence of the Fourier–Bessel series [13].

Various inverse problems of determining the coefficients and right-hand sides of certain types of
second-order partial differential equations, i.e., parabolic, hyperbolic, and elliptic equations, have
been studied in many papers (see, e.g., the monographs [14–19] and the extensive bibliography
therein). Inverse problems of reconstructing the kernel in hyperbolic integro-differential equations
were studied in [20, 21]. Numerical methods for finding the coefficients of equations can be found
in the papers [22, 23] (see also the bibliography therein).
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INVERSE PROBLEM FOR AN EQUATION 395

1. STATEMENT OF THE PROBLEM

In the domain G := {(ρ, t) | 0 < ρ < 1, −α < t < β}, consider the differential equation of the
mixed parabolic–hyperbolic type

θ(t)d
∂u

∂t
+ θ(−t)c2∂

2u

∂t2
=

1

ρ

∂u

∂ρ
+
∂2u

∂ρ2
+ f(ρ), (ρ, t) ∈ G, (1)

with the boundary conditions[
ρ
∂

∂ρ
u(ρ, t)

]
ρ=0

= 0, u|ρ=1 = 0, −α ≤ t ≤ β, (2)

the matching conditions

u(ρ,+0) = u(ρ,−0), ut(ρ,+0) = ut(ρ,−0), 0 ≤ ρ ≤ 1, (3)

at t = 0, and the initial condition

u(ρ,−α) = φ(ρ), 0 ≤ ρ ≤ 1. (4)

Here θ(t) is the Heaviside theta function, and α, β, d, and c are given positive numbers. We assume
that the functions f(ρ) and φ(ρ) are sufficiently smooth.

Note that the earlier-described problems in a cylindrical domain in the case of axial symmetry
can be reduced to equations of the form (1).

Relations (1)–(4) are a direct problem; i.e., if the functions f(ρ) and φ(ρ) and the con-
stants d, c, α, and β are known, then the solution u(ρ, t) can be found from Eqs. (1)–(4).

Denote G+ = G ∩ {t > 0} and G− = G ∩ {t < 0}.

Definition 1. By a solution of the direct problem (1)–(4) we mean a function u(ρ, t) in the
class C2,1

ρ,t (G+ ∪ {t = β}) ∩ C2(G− ∪ {t = −α}) that is a solution of Eq. (1) in the domain G
and satisfies conditions (1)–(4).

Inverse problem. Determine the function f(ρ) if the following additional information is known
about the solution of the direct problem (1)–(4):

u(ρ, β) = ψ(ρ), 0 ≤ ρ ≤ 1, (5)

where ψ(ρ) is a given sufficiently smooth function.

Definition 2. A solution of the inverse problem (1)–(5) is a pair of functions u(ρ, t) and f(ρ)

in the classes C2,1
ρ,t (G+ ∪ {t = β}) ∩ C2(G− ∪ {t = −α}) and C[0, 1], respectively, satisfying rela-

tions (1)–(5).
The next two sections deal with constructing a solution of the direct problem by the spectral

method and proving existence and uniqueness theorems for this solution.

2. ANALYSIS OF THE DIRECT PROBLEM

Seeking particular solutions of Eq. (1) with f(ρ) = 0 in the form u(ρ, t) = R(ρ)T (t) according
to the Fourier method, we obtain the following relations:

dT
′
(t)R(ρ) =

1

ρ
T (t)R

′
(ρ) + T (t)R

′′
(ρ), t > 0,

c2T
′′
(t)R(ρ) =

1

ρ
T (t)R

′
(ρ) + T (t)R

′′
(ρ), t < 0.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 16 No. 3 2022



396 DURDIEV, MERAJOVA

Separating the variables, we have

d
T

′
(t)

T (t)
=

1

ρ

R
′
(ρ)

R(ρ)
+
R

′′
(ρ)

R(ρ)
= −λ2, t > 0,

c2
T

′′
(t)

T (t)
=

1

ρ

R
′
(ρ)

R(ρ)
+
R

′′
(ρ)

R(ρ)
= −λ2, t < 0,

where λ is an arbitrary real parameter. Hence for the function R(ρ) we obtain the problem for the
equation

R
′′
(ρ) +

1

ρ
R

′
(ρ) + λ2R(ρ) = 0 (6)

with the boundary conditions
lim
ρ→0

(
ρR

′
(ρ)

)
= 0, R(1) = 0, (7)

which is a self-adjoint problem.
The following Bessel functions of the first kind and zero order are solutions of Eq. (6):

Rk(ρ) = J0(λkρ), k = 1, 2, 3, . . .

They are also eigenfunctions. We find the eigenvalues using the boundary conditions (7) and the
positive roots of the equation J0(λk) = 0. They are as follows:

λk = kπ − π

4
= (4k − 1)

π

4
.

Now let us expand the unknown function and the right-hand side of the equation in Bessel Fourier
series in the eigenfunctions J0(λkρ); i.e.,

u(ρ, t) =

∞∑
k=1

uk(t)J0(λkρ), (8)

f(ρ) =

∞∑
k=1

fkJ0(λkρ), (9)

where

uk(t) =
2

J2
1 (λk)

1ˆ

0

ρu(ρ, t)J0(λkρ) dρ,

fk =
2

J2
1 (λk)

1ˆ

0

ρf(ρ)J0(λkρ) dρ.

Substituting (8) and (9) into (1), we obtain

du′
k(t) = −λ2

kuk(t) + fk, t > 0,

c2u′′
k(t) = −λ2

kuk(t) + fk, t < 0.
(10)

One can readily establish that these differential equations have the general solutions

uk(t) = cke
−λ2

kt/d + fk/λ
2
k, t > 0,

uk(t) = ak cos

(
λk

c
t

)
+ bk sin

(
λk

c
t

)
+ fk/λ

2
k, t < 0,

(11)

where ak, bk, and ck are arbitrary constants.
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To find the coefficients ak, bk, and ck, we use the matching conditions

uk(0 + 0) = uk(0− 0),

u′
k(0 + 0) = u′

k(0− 0)

and obtain ak = ck and bk = −λkc

d
ck. From the initial condition (3), we have

ak cos

(
λk

c
α

)
− bk sin

(
λk

c
α

)
+ fk/λ

2
k = φk,

where the φk are the Fourier–Bessel coefficients of the series

φ(ρ) =

∞∑
k=1

φkJ0(λkρ), (12)

Substituting the values ak and bk expressed via ck and solving the resulting system for ck, we find

ck =
φk − fk/λ

2
k

cos

(
λk

c
α

)
+
λkc

d
sin

(
λk

c
α

) . (13)

We introduce the notation

δα(k) = cos

(
λk

c
α

)
+
λkc

d
sin

(
λk

c
α

)
. (14)

3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE DIRECT PROBLEM

Substituting the eigenvalues, we find the values of α for which the expression (14) takes nonzero
values. To this end, we rewrite (14) as follows:

δα(k) =

√
1 +

(4k − 1)2π2c2

16d2
sin

(
4k − 1

4c
απ + γk

)
, (15)

where

γk = arcsin

 1√
1 +

(4k − 1)2π2c2

16d

 .

Let us find the values of α for which δα(k) = 0; here we have α = 4c
(4k−1)π

(πn− γk).
Now let us find the values of α for which∣∣δα(k)∣∣ ≥ C0 > 0. (16)

To this end, we estimate δα(k) in absolute value. Owing to the equality α = 4cp, p ∈ N, we
obtain |δα(k)| = 1 ≥ C0 > 0.

Let α = 4cn/m, n,m ∈ N, (n,m) = 1; then from (15) for the values α = 4cp, p ∈ N,
or α = 4cn/m, n,m ∈ N, where n and m are coprime numbers, i.e., GCF (n,m) = 1, β > 0;
for (14) and (15), we have

∣∣δα(k)∣∣ =
∣∣∣∣∣
√

1 +
(4k − 1)2π2c2

16d2
sin

(
4k − 1

4c
απ + γk

)∣∣∣∣∣
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=

∣∣∣∣∣
√

1 +
(4k − 1)2π2c2

16d2
sin

(
4k − 1

m
nπ + γk

)∣∣∣∣∣ .
Let us divide (4k − 1)n by m with remainder, (4k − 1)n = sm+ r, s, r ∈ N ∪ 0, 0 ≤ r < m. Then
the expression for |Aαβ(k)| has the form

∣∣δα(k)∣∣ =
∣∣∣∣∣
√

1 +
(4k − 1)2π2c2

16d2
sin

( r
m
nπ + γk

)∣∣∣∣∣ .
Since 0 ≤ rπ/m < π, as γk → 0, it follows that (16) holds for sufficiently large k and an arbi-
trary β > 0.

Thus, we have obtained the following uniqueness criterion.

Theorem 1. If there exists a solution of problem (1)–(4), then it is unique for the val-
ues α = 4cp, p ∈ N, or α = 4cn/m, n,m ∈ N, GCF (n,m) = 1.

Now let us prove the existence of a solution. Substituting (13) into (11), we find

uk(t) =
φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k, t > 0,

uk(t) =
φk − fk/λ

2
k

δα(k)

(
cos

(
λk

c
t

)
− c

λk

d
sin

(
λk

c
t

))
+ fk/λ

2
k, t < 0.

Taking into account these relations, from (8) and (9) we obtain a formal solution of the posed
problem in the form of the series

u(ρ, t) =

∞∑
k=1

[
φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

]
J0(λkρ), t > 0, (17)

u(ρ, t) =

∞∑
k=1

[
φk − fk/λ

2
k

δα(k)

(
cos

(
λk

c
t

)
− c

λk

d
sin

(
λk

c
t

))
+ fk/λ

2
k

]
J0(λkρ), t < 0. (18)

To prove the existence of a solution, we need to show that the series (17), (18) and the series
obtained by differentiating the function u(ρ, t) two times with respect to ρ and once with respect
to t in the domain G+ and twice with respect to ρ and with respect to t in the domain G− converge
uniformly.

To estimate the coefficients of the Fourier–Bessel series of the function u(x, t) and the series
obtained by its differentiation, we calculate the general terms of these series,

uk(ρ, t) =

[
φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

]
J0(λkρ), t > 0, (19)

uk(ρ, t) =

[
φk − fk/λ

2
k

δα(k)

(
cos

(
λk

c
t

)
− c

λk

d
sin

(
λk

c
t

))
+ fk/λ

2
k

]
J0(λkρ), t < 0, (20)

∂uk(ρ, t)

∂t
= − 1

dδα(k)
(fk − λ2

kφk)J0(λkρ), t > 0, (21)

∂2uk(ρ, t)

∂t2
=

1

δα(k)

[
− λ2

k

c2
cos

(
λk

c
t

)
+
λ3
k

cd
sin

(
λk

c
t

)](
φk − fk/λ

2
k

)
J0(λkρ), t < 0, (22)
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∂2uk(ρ, t)

∂ρ2
=

[
φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

]
λ2
kJ

′′

0 (λkρ), t > 0, (23)

∂2uk(ρ, t)

∂ρ2
=

[
φk − fk/λ

2
k

δα(k)

(
cos

(
λk

c
t

)
− c

λk

d
sin

(
λk

c
t

))
+ fk/λ

2
k

]
λ2
kJ

′′

0 (λkρ), t < 0. (24)

Let the functions φ(ρ) and f(ρ) satisfy the assumptions of the theorem in ([13, pp. 289–291 of the
Russian edition]) with some s ≥ 1 (the number s will be defined later). Then for the Fourier–Bessel
coefficients of these functions one has the estimates [13, p. 282 of the Russian edition]

|φk| ≤
M1

λ
2s−1/2
k

,

|fk| ≤
M2

λ
2s−1/2
k

.

In order to estimate the expressions in (19)–(24), we need estimates for the functions J0(z)
and J ′′

0 (z), z ∈ [0,+∞). For the Bessel function Jν(z), one has the well-known integral representa-
tion

Jν(z) =
1

2π

πˆ

−π

eiz cosφ+iν sinφ dφ,

which implies the estimate |Jν(z)| ≤ 1, z ∈ R. Taking into account this estimate and the rela-
tions [13]

J ′
0(z) = −J1(z),

J ′′
0 (z) = (1/2)

(
J2(z)− J0(z)

)
,

we find the estimates |J0(z)| ≤ 1 and
∣∣J ′′

0 (z)
∣∣ ≤ 1, z ∈ [0,+∞), which will be used below.

Let us estimate the function uk(ρ, t),

∣∣uk(ρ, t)
∣∣ = ∣∣∣∣∣

[
φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

]
J0(λkρ)

∣∣∣∣∣ =
∣∣∣∣φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

∣∣∣∣∣∣J0(λkρ)
∣∣

≤
∣∣∣∣φk − fk/λ

2
k

δα(k)
e−

λ2
k
d t + fk/λ

2
k

∣∣∣∣ ≤ |φk|

∣∣∣∣∣e−
λ2
k
d t

δα(k)

∣∣∣∣∣+ |fk|

∣∣∣∣∣ e−
λ2
k
d t

λ2
kδα(k)

∣∣∣∣∣+ ∣∣fk/λ2
k

∣∣
≤ M1

λ
2s−(1/2)
k

+
M2

λ
2s−(1/2)+2
k

≤ N1

λ
2s−(1/2)
k

, t > 0;

in this case, s = 2 for the function φ(x) and s = 0 for the functions f(x).
One has the estimate

∣∣uk(ρ, t)
∣∣ = ∣∣∣∣∣

[
φk − fk/λ

2
k

δα(k)

(
cos

(
λk

c
t

)
− c

λk

d
sin

(
λk

c
t

))
+ fk/λ

2
k

]
J0(λkρ)

∣∣∣∣∣
≤M1

λk

λ
2s−(1/2)
k

+
M2

λ
2s−(1/2)+1
k

≤ N2

λk

λ
2s−(1/2)
k

, t < 0;

here s = 3 for the function φ(x) and s = 1 for the function f(x); M1, M2, N1, and N2 are positive
constants.
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Further, in a similar way we carry out obvious estimates for the expressions (21)–(24) and find∣∣∣∣∂uk(ρ, t)

∂t

∣∣∣∣ ≤ N3

λ2
k

λ
2s−(1/2)
k

, t > 0,

∣∣∣∣∂2uk(ρ, t)

∂t2

∣∣∣∣ ≤ N4

λ3
k

λ
2s−(1/2)
k

, t < 0,∣∣∣∣∂2uk(ρ, t)

∂ρ2

∣∣∣∣ ≤ N5

λ2
k

λ
2s−(1/2)
k

, t > 0,

∣∣∣∣∂2uk(ρ, t)

∂ρ2

∣∣∣∣ ≤ N6

λ3
k

λ
2s−(1/2)
k

, t < 0.

Here N3, N4, N5, and N6 are positive constants.
From these inequalities, we obtain

max

{
max

(ρ,t)∈G+

∣∣∣∣∂uk(ρ, t)

∂t

∣∣∣∣, max
(ρ,t)∈G−

∣∣∣∣∂2uk(ρ, t)

∂2t

∣∣∣∣,
max

(ρ,t)∈G+

∣∣∣∣∂2uk(ρ, t)

∂2ρ

∣∣∣∣, max
(ρ,t)∈G−

∣∣∣∣∂2uk(ρ, t)

∂2ρ

∣∣∣∣
}

≤ N
λ3
k

λ
2s−(1/2)
k

,

(25)

where N is a positive constant.
It follows that if s = 3 for the function φ(x) and s = 2 for the function f(x), then, according

to the theorem in [13, p. 282 of the Russian edition], the series (17), (18), the series obtained by
differentiating u(ρ, t) twice with respect to ρ and once with respect to t in the domain G+, and
the series obtained by differentiating the function u(ρ, t) two times with respect to ρ and with
respect to t in the domain G− converge uniformly.

Thus, we have proved the following assertion.

Theorem 2. Let φ(ρ) ∈ C6[0, 1], let f(ρ) ∈ C4[0, 1], and let, in addition, condition (16) and
the following equalities be satisfied:

φ(i)(0) = 0, i = 0, 1, . . . , 5, f (i)(0) = 0, i = 0, 1, . . . , 3,

φ(i)(1) = 0, i = 0, 1, . . . , 4, f (i)(1) = 0, i = 0, 1, 2.

Then there exists a unique solution of problem (1)–(4). This solution is defined by formu-
las (17), (18), where φ(i) and f (i) are the ith derivatives of the functions φ and f , while φk and fk
are the Fourier–Bessel coefficients of φ and f , respectively.

4. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE INVERSE PROBLEM

Let us proceed to the study of the inverse problem. Using the additional condition (8), we expand
the function ψ in the Fourier–Bessel series

ψ(ρ) =

∞∑
k=1

ψkJ0(λkρ), (26)

where the ψk are the Fourier–Bessel coefficients. As a result, we obtain

cke
−λ2

k
d β + fk/λ

2
k = ψk,

Substituting the value of ck into this equality, we find

fk = λ2
k

(
φke

−λ2
kβ/d − ψkδα(k)

e−λ2
kβ/d − δα(k)

)
. (27)

Set
Aαβ(k) = e−λ2

kβ/d − cos

(
λk

c
α

)
− λkc

d
sin

(
λk

c
α

)
. (28)
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It is easily seen that the relation
Aαβ(k) ̸= 0 (29)

holds if α satisfies the assumptions of Theorem 1 with an arbitrary β > 0. Then, just as Theorem 1,
we have the following criterion for the uniqueness of the solution of the inverse problem.

Theorem 3. If there exists a solution of the inverse problem (1)–(5), then it is unique for the
values α satisfying the assumptions of Theorem 1 and for any β > 0.

Let us prove the existence of a solution of the inverse problem. By analogy with estimate (28),
we obtain an estimate for the function f(ρ),

f(ρ) =

∞∑
k=1

λ2
k

(
ψk −

ψk − φk

Aαβ(k)

)
e−λ2

kβ/dJ0(λkρ), (30)

where the functions φ(ρ) and ψ(ρ) satisfy the assumptions of the theorem in [13, p. 282 of the
Russian edition] with some s ≥ 1. Then for the Fourier–Bessel coefficients of these functions we
have the estimates

|φk| ≤
M1

λ
2s−(1/2)
k

,

|ψk| ≤
M3

λ
2s−(1/2)
k

,

and the estimate for f(ρ) has the form

∣∣f(ρ)∣∣ ≤ N
λ2
k

λ
2s−(1/2)
k

.

It follows from this estimate and the estimate (25) that if s = 3, then, according to the theorem
in [13, p. 282 of the Russian edition], the series in (17), (18), and (30), the series obtained by
differentiating the function u(ρ, t) two times with respect to ρ and once with respect to t in the
domain G+, and the series obtained by differentiating the function u(ρ, t) twice with respect to ρ
and with respect to t in the domain G− converge uniformly.

Thus, we have proved the main result of the present paper.

Theorem 4. Assume that the function φ(ρ) satisfies the conditions in Theorem 2, conditions (29)
are satisfied, and for the function ψ(ρ) ∈ C6[0, 1] one has the equalities

ψ(i)(0) = 0, i = 0, 1, . . . , 5,

ψ(i)(1) = 0, j = 0, 1, . . . , 4.

Then there exists a unique solution of problem (1)–(5). This solution is defined by formu-
las (17), (18), and (30), where the ψ(i) are the ith derivatives of the function ψ and the ψk are
the Fourier–Bessel coefficients of the function ψ.
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