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1. Introduction.

Integro-differential equations are a
class of equations in which the unknown
function is contained both under the integral
sign and under the differential or derivative
sign. In this article we consider an integro-
differential equation of mixed type.

Various questions of physics and
technology lead to the study of integro-
differential equations in ordinary and partial
derivatives and to the formulation of certain
tasks. The exact solution of which either cannot
be expressed in a closed form using modern
methods, or these solutions are expressed in a
cumbersome form. In this regard, the theory
such equations have long attracted the attention
of  both  theoretical  physicists and
mathematicians, The mixed type equation
occurs in the case of application - for example,
in problems related to transonic gas dynamics.
[1][2].

Direct and inverse problems for an

equation of mixed parabolic-hyperbolic type
were studied in [3]-[6], [8]-[10]. A criterion for
uniqueness and existence has been established
solving the inverse problem of determining the
unknown right-hand side. Also in [11], other
formulations of the inverse problem were
considered. Generally speaking, direct and
inverse problems for mixed type equations are
not as well known as similar problems for
classical equations. However, these tasks are
also relevant to practice.

This article considers the problem for
the integro-differential equation mixed type and
proves the uniqueness of the solution to the
problem posed.

2. Statement of the boundary value problem.

Let us present the formulation of the
inverse problem for an integro-differential
equation of mixed type.

Consider in the domain G =
{(x,t):0<x<1,—-a<t<p}} an integro-
differential equation of mixed type:

ut_uxxzf(x); t>0

t

U — Uy = f() +f K(@u(x,1)dt.t <0
0

where «a,f are given positive numbers.

(1)
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Find in the domain G the function u(x,t) toequation (1) and the following conditions:
boundary conditions:

Uly=0=0=0ul=; =0, —a<t<p, (2)
and we assume that the local condition holds:
u(x’_a) = (p(.X'), X € [0'1]' (3)
as well as gluing conditions at t = O:
ou(x,t) . du(x,t)

tll)rzlou(x, t) = tll)rJrrlOu(x, t), tl_l)rzlo , x €[0,1], (4)

at t-+0 Ot
here ¢(-) is a given sufficiently smooth function.
Let's denote
G,=Gan{t > 0}L,G_=6n{t< 0}

Relations (1)-(4) are a direct problem, i.e., if the functions ¢, f are known, then the solution
u(x,t) can be found from relations (1)-(4).

Definition 1. The solution to problem (1)-(4) is the function u(x,t) from the class C(G) N
CHG)N CHH(Gyu{t = BY) NC?(G- U {t =—a}) and satisfying relations (1)-(4).

Now let’s pose the inverse problem in a given area:

Inverse problem: It is necessary to determine the function K(t) if the following additional
information is known about the solution of the direct problem (1)-(4):

u(x,p) = p(x), x € [0,1]. (5)

here Y (-)is a given sufficiently smooth function

Definition 2. The solution to problem (1)-(5) is the functions u(x,t) and K(t) from the
class C(G)NCHG)N CL(GLu{t = BHNC?(G-u{t=—a})and C[0,1] respectively, satisfying
relations (1)-(5).

We expand the unknown function and the initially given functions into Fourier series (where
A, = mn)

u(x, t) = Z u, (t)sini, x,

n=1

(P(x) = z ¢n Sin A, x,
n=1

flx) = z fnsin A, x.
n=1

Substituting the series for the functions uEx t) and f(x) in (1) we getthe following:
() + 2u, () = fo, t>0,

t
6
u’, () + 22u,(t) = f;, +f K(@u,(t)dr, t<O0. (6)
—-a
Let us introduce the following notation:
t
F,(t;u) =f K(Du,(t)dr. (7
—-a
Substitute (7) into (6) we get the following:
{ u'n(t) + Aup(t) = fr, t>0 ®)
u'n(t) + Buy(t) = fu + Fp(tu), t<0

We solve inhomogeneous ordinary differential equations in (9) by the method of variation of
constants and obtain a general solution in the following form:
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fn
22’

( u, (t) = Ce™t + 22

1 t
U, (t) = Cycos(A,t) + Cysin(A,t) + ;2 i f F,(t;u) - sin (1,(t — 1))dt,t < 0.
nJ—-a

t>0,
(9)

Using gluing conditions (4) and initial conditions (3) for unknown coefficients, we obtain the
following system of linear equations-

fn fa

1 (° )
C +AZ =(C; + AZ Zf_aFn(T; u) - sin (A,7)dr,

0
{  —23C=21,C, +f F,.(t;u) - cos (4, 7)dT,
-a

Cicos(Apa) — Cysin(A,) + /I{—Z = @y
n

From here we find the coefficients:

,
C = C+—f F.(t;u) - sin (A,7)dT,
1 0
3 C, = —2,C—— | F,(t;u)-cos (A,1)dr,
A J_g
. 10 : fn
C(cos()lna) + A,sin(A,a) ) — —f F.(t;u) - sm(/ln(a - T)) dt = ¢, — =.
L /1n - A?l
Which implies
On — f—” + f_Oa Fp(t;w) - sin(A,(a — 1)) dr
C =
cos(A,a) + A,sin(A,a)
Then, substitute the found coefficients into (9) and obtain the formal solution:
§
On — /]{'2‘ + - o f Fpo(t;w) - sin(A,(a — 1)) dr . f
u, (t) = et 2 >0,
cos(A,a) + A,sin(A,a) A2
0 :
On — % + — f_a Fo(t;u) - sin(A,(a — 1)) dr (10)
t) = Ant) — Apsin(Apt
Un (1) cos(l a) + A, sin(A,a) (cos(Ant) = Znsin(2,1)) +
fa :
\ +A_2 +— 7 J_aFn(T; u) - sin (1,(t — 1t))dt,t < 0.

Let's perforrn the following calculations:

] F,.(t;u) - sm(l (t— ‘L')) dt = j U K(s)un(s)dsl . sin(/ln(t - T)) dt =

U= J K(s)u,(s)ds,— dU = K(t)u,(t)dt
dv = sin(ln(t — T)) dr,» V= %cos(ln(t — T))

t

T 1
B f K ($)tn(s)ds * —cos(An(t — 1))

An T=—a
1 (¢ 1t
- K(T)cos(ln(t — T))un(r)dr =— | K({@u,(r)dt—
) g Al o
1 t
- K(T)cos()ln(t - T))un(r)dr =
And_qy
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= %fr K(1) (1 — cos(A,(t — T))) u, (7)dr,

that is

ft F,(t;u) - sin(/’ln(t - T)) dt = %fr K(7) (1 — cos(/ln(t — T)))un(r)dr. (12)

Let us calculate the following integral in exactly the same way
f 2(Tw) - sin(A, (@ — 1)) dr = f U K(s)un(s)dsl sin(A,(a — 1)) dt =
—-a -a

U= f K(s)u,(s)ds,— dU = K(t)u,(t)dt

1
dV = sin()ln(a - r)) dr,» V= A—cos(ln(a — T))
0

1
=f K(s)u,(s)ds - —cos(ﬂ (@ —1))

%4

T=—xa

1
) K(T)cos(/l (@ —1))up(v)dr =

_ COS;Ana)f K(®)u,(t)dr — % K(T)COS(/ln(a - T))un(f)dT =

nJ—q

0
= %j K(7) (cos(/lna) — cos(An(a — r))) u, (1)dr,

that is

f F.(t;u) - sm(/l (a— T)) dT——f K(1) cos(/l a)—cos(/l (a—r)))un(r)dr (13)

Substituting (12) and (13), into (11) we obtam the following integral equations:

In
on=24 e [0 KO cosCin)—cos(in(a=0)Jun(ar
un(t) - cos(Apa)+Ansin(A,a) e +E’ t>0, (14)
cos(A,t) — A,sin(A,t) fa
Un (t) = : Pn =72 +
cos(Apa) + Apsin(A,a) Aq
0

i K(‘L’) (cos(lna) — cos(/ln (a— T))) U, (T)drl +

Az
+— + —J K(r) 1 — cos (A (t — T)))un(T)dT t <O. (15)

If the free term and the kernel are continuous functions, then the unique solvability of equations
(13) can be proven by the method of successive approximations.
We substitute the solution of equations (14) and (15) into the next series
co

u(x,t) = Z u,(t)sin, x (16)
n=1
and find the solution (1) of the equation that satisfies the given conditions.

© o, AZ + /12f K(1) (cos(l a) — cos(/l (a —T)))un(‘[)d‘[ y
t) —Ant 4
u(xt) Z cos(A,a) + Aysin(A,a)
n=1
+= I Apx), t>0 17
PP sin(4,x ,
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W 6) = i [cos()tnt) — Apsin(A,t) fa
n=1

cos(A,a) + Apsin(A,a) Pn = 22 +

+ 1 K(7) (cos(/lna) — cos(Ap(a — T))) u,(t)dt| +

/12

nJ—a

+£—:le+ %L K(T) (1 - COS(An(t - T))) un(T)dT] Sin(/lnx) T < 0. (18)

Now we will prove the uniqueness of the solution.
We solve problem (1)-(4) for the case f(x) =0 and ¢(x) =0, then we obtain solutions in the
following form:

© /.lizf_oa K(7) (cos(lna) — cos(Ap(a — T))) u,(t)dt
u(x,t) = Z = . e~ Mt sin(1,x),
L cos(A,a) + A,sin(A,a)
t >0, (19)

- Ant) — Aysin(A,t) 1 (°
u(x, t) = Z LCOOSS((A og = ZZEA Z)) A_Zf K(7) (cos(/lna) — cos(Ap(a — T))) u, (t)dt +

t
+%j0 K(7) (1 — cos(An(t — T))) un(r)drl sin(A,x),t < 0. (20)

Common members of these series
1 0
B Ef_aK(r)(cos(lna)—cos(ln((x—r)))un(r)dr 2
un(t) - cos(Apa)+Apsin(A,a) € , t>0, (21)
cos(Ayt) — Apsin(A,t) 1
cos(Ap,a) + Apsin(A,a) A2

+%f;[{(r) (1 — cos(An(t = r))) u,(r)dr ,t <0. (22)

For t > 0 we have a homogeneous Fredholm equation of the 2nd kind of the form (21). In this
case {A,,sin(1,x)} € L?>(0,1) and 0 = u, = (u,sin(1,,x)) = 0. Then u(x,t) = 0.
Now consider the case t < 0. We have obtained an integral equation of the Volterra-Fredholm
type. The book [12] shows the fulfillment of the following inequality
Theorem 1[12]. Let u(t),a(t),b(t),f(t),g(t) € C(I,R,).
(a1) Let a(t) be continuously differentiable on I, a’(t) = 0 and
B

t
u(t) <a(t) +fb(s)u(s)ds +f c(s)u(s)ds,

a

0
u, (t) = f K1) (cos(/lna) — cos(Ap(a — T))) u, (1)dr

for tel.If
B

S
p1 = fC(S) exp fb(a) do |ds < 1,
a a

then
B

u (t) < M, exp fb(s) ds +Ja'(s) exp fb(a) do |ds,

a
for t € I, where

B s t
M, = T a(a)+fc(s) fa’(r)exp fb(a) do |dt |ds
pl (24 [24 T
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(az) Suppose that

t B
u(t) < a(t) + b(t)ff(s)u(s)ds + c(t) f g(s)u(s)ds.

fortel. If
B

b= [ K <1

then
u(t) < Ki(t) + MyK,(t)
for t € I, where

K, (t) =a(t) + b(t)ff(r)a(r) exp ff(a)b(o)da drt,

K,(t) = c(t) + b(t)ff(r)c(r) exp jf(a)b(a)da dr,

and

1

M, =
2 1-p;

B

f g(s)K;ds.
a
In our case

1) a(t) =0,
2) b(r) = %K(T) (1 — cos(/ln(t — T))), K € C[—a, 0],

3) c(r) = £0SUnt)Ansin(nt) 1 f_Oa K1) (cos(/lna) — cos(Ap(a — r))) u, (7)dr.

cos(Apa)+Ansin(Apa) E
If
B

N
p1 = JC(S) exp fb(cr) do |ds <1,
[24

then u,(t) < M, exp (f; b(s) ds) + ff a'(s) exp (f: b(o) da) ds
where ff a'(s) exp (f; b(o) da) ds =0 and
B s t
1
M, = — a(a)+Jc(s) Ja (r)exp be(a) do |dt |ds| =0,

a a

from here u,(t) =0 and
0 =u, = (u,sin(4,x)) = 0. Then u(x,t) =0.
Thus we proved the following theorem:
Theorem. Let the following conditions be satisfied
|cos(A,a) + A, sin(A,a)| = ay > 0,
and ¢ € C%[0,1], f € C}[0,1], K € C[—a, B].

Then the solution to problem (1)-(4), presented in the form of series (19)-(20), is unique.

4. Conclusion. The theory of inverse and ill- the beginning, direct problems posed for
posed problems is widely used in almost all integro-differential equations of parabolic and
areas of science, in particular in solving hyperbolic types are studied and a method for
practical problems. Therefore, in this article, at solving them is given.
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Currently, the study of inverse problems is
relevant, so the formulation of the inverse
problem for a mixed interdifferential equation
is given.
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