
Uzbek Mathematical Journal
2022, Volume 66, Issue 4, pp.1-14
DOI: 10.29229/uzmj.2022-4-11

Inverse source problem for equation of mixed
parabolic-hyperbolic type: one-dimensional case

Merajova Sh. B.

Abstract. In this paper, we state an inverse problem for a model equation
of a mixed parabolic-hyperbolic type with discontinuous coefficients and with a
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a theorem on the uniqueness of a solution to this problems.
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1 Introduction
The direct and inverse problem for an equation of a mixed parabolic-

hyperbolic type with a non-local condition was studied in the work of
Sabitov K.B. and Safin E.M. [25]. A criterion for the uniqueness and
existence of a solution to the inverse problem for determining the unknown
right-hand side was established. Also in [2] other formulations of the
inverse problem were considered. In this paper, we consider a problem with
discontinuous coefficients.

In mathematical physics, problems of the following type are usually
considered: a differential equation is given and additional conditions that
must be satisfied by the solution of the differential equation. These
additional conditions distinguish one solution from the entire set of solutions
of the differential equation. There is a classification for the equations of
mathematical physics. Moreover, for each class of differential equations there
are typical problem statements. A characteristic feature of these problems
is their correctness. Correct problems in mathematical physics are called
direct problems. To solve the direct problem, a given set of functions is
associated with a new function - the solution of a boundary value problem.
In this way, a certain operator is constructed, which is defined on the data
of the direct problem.

Let us now imagine that some of the functions that are usually given in
the direct problem are unknown (and it is precisely their finding that is of
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main interest), and instead of them some additional information about the
solution of the direct problem is given. Similar problems are called inverse
problems of mathematical physics.

The theory of boundary value problems for equations of mixed type is
one of the central sections of the theory of partial differential equations and
occurs in solving many important problems of an applied nature.

Direct and inverse problems for equations of mixed type have been
studied relatively less than problems for equations of a particular type.

To date, the most complete results have been obtained on the study of
direct problems for equations of mixed type [6]-[22], [4]-[5], but there are
practically few works related to the search for a solution to inverse problems
for an equation of mixed type [25]-[2], [18]-[10].

Generally speaking, direct and inverse problems for equations of mixed
type are not as well known as similar problems for classical equations. The
problem considered in the article is relevant to practice. For example, the
problem considered in this work is related to modeling the process of gas
movement in a closed channel with porous walls, and the gas movement
in the channel is described by the wave equation, and outside it, by the
diffusion equation [8], [6]. Non-classical problems, problems of mixed type
were considered in the works of Trikomi F.[6],[30], Fiker G. [7], Vragov
V. N.[32], Nakhusheva A.M. [1], [20] and many other researchers (see, for
example, [3]-[19]).

Numerical solutions of the inverse problem were considered in the works
[11]-[16].

2 Formulation of the problem

In a rectangular region G := {(x, t) : 0 < x < l;−α < t < β}, here α and
β — are given positive numbers, consider equations of mixed parabolic-
hyperbolic type::

c2θ(−t)utt + θ(t)ut = D̂uxx + f(t)g(x), (2.1)

where, D̂ =

{
D, if t > 0
1, if t < 0

, θ(t) is Heaviside function; D is diffusion

coefficient and c is the speed of the gas are given constants.
For this equation, we can consider the following inverse problem:
Problem. Find in the domain G the solution of equation (2.1) and the
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unknown function g(x) on the right side satisfying the conditions:

u(x, t) ∈ C0,1
x,t

(
G
)
∩ C2,1

x,t (G+ ∪ {t = β}) ∩ C2,2
x,t (G− ∪ {t = −α}), (2.2)

g(x) ∈ C[0; l]. (2.3)

Boundary conditions:

u(0, t) = u(l, t) = 0, −α ≤ t ≤ β, (2.4)

we assume that the nonlocal condition takes place:

u(x, β)− u(x,−α) = ϕ(x), 0 ≤ x ≤ l, (2.5)

bonding conditions at t = 0:

lim
t→+0

u(x, t) = lim
t→−0

u(x, t), lim
t→+0

∂u(x, t)

∂t
= lim
t→−0

∂u(x, t)

∂t
, x ∈ [0, l], (2.6)

if the following additional information about the solution of the equation is
known:

u(x, β) = ψ(x), 0 ≤ x ≤ l, (2.7)

where f(t), ϕ(x) и ψ(x)— given sufficiently smooth functions, ϕ(0) = ϕ(l) =
0, ψ(0) = ψ(l) = 0, G+ = G ∩ {t > 0}, G− = G ∪ {t < 0}.

Relations (2.1)-(2.6) are a direct problem, i.e., if the functions ϕ(x), g(x)
and the constants c and D, are known, then the solution u(x, t) can be found
from the relations (2.1)-(2.6).

3 Solutions of the inverse problem for f(t) = 1

To solve this problem, we use the method of separation of variables. This
method is used in constructing solutions to the so-called mixed problems
for a wide class of partial differential equations.

Simple reasoning shows that ωk = πk
l , k ∈ Z are eigenvalues, а Xk(x) =

sin πk
l x are eigenfunctions. Hence, the functions u(x, t) , f(t), g(x), ϕ(x) и

ψ(x) are expanded in the Fourier series as follows:

u(x, t) =

∞∑
k=1

uk(t) sin(ωkx), (3.1)
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g(x) =

∞∑
k=1

gk sin(ωkx), (3.2)

ϕ(x) =

∞∑
k=1

ϕk sin(ωkx), (3.3)

ψ(x) =

∞∑
k=1

ψk sin(ωkx). (3.4)

Substituting(3.1)-(3.2) in the equation(2.1) we get the following equations:

u′k(t) +Dω2
kuk(t) = gkf(t), (3.5)

u′′k(t) +
1

c2
ω2
kuk(t) =

1

c2
gkf(t). (3.6)

From conditions (2.5) and (2.7), we find the following relations:{
uk(β)− uk(−α) = ϕk,
uk(β) = ψk.

(3.7)

Here,

ϕk =
2

l

∫ l

0

ϕ(x) sin(ωkx)dx,

ψk =
2

l

∫ l

0

ψ(x) sin(ωkx)dx.

Let’s first consider the case, f(t) = 1. Equations (3.5) and (3.6) ) take the
following form:

u′k(t) +Dω2
kuk(t) = gk, (3.8)

u′′k(t) +
1

c2
ω2
kuk(t) =

1

c2
gk. (3.9)

Solving equations (3.8) and (3.9), we obtain the following solutions:

uk(t) = Cke
−Dω2

kt +
gk
Dω2

k

, t > 0 (3.10)

uk(t) = Ak cos
(ωk
c
t
)
+Bk sin

(ωk
c
t
)
+
gk
ω2
k

, t < 0. (3.11)
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From conditions (2.6), we find the gluing conditions for uk{
uk(0− 0) = uk(0 + 0),
u′k(0− 0) = u′k(0 + 0).

(3.12)

Using conditions (3.7) and (3.12) we get the following linear system of
equations:

Ak +
gk
ω2
k
= Ck +

gk
Dω2

k
,

1
cωkBk = −Dω2

kCk,

Cke
−Dω2

kβ + gk
Dω2

k
−
(
Ak cos

(
ωk
c α
)
−Bk sin

(
ωk
c α
)
+ gk

ω2
k

)
= ϕk

Having obtained a system of linear equations for determining unknown
coefficients, we find them:

Ck =
ϕk−

gk
ω2
k

1−D
D (1−cos(ωkc α))

e−dω
2
k
β−(cos(ωkc α)+Dcωk sin(ωkc α))

Ak = Ck +
gk
ω2
k

1−D
D ,

Bk = −DcωkCk

i.e.



Ak =
ϕk−

gk
ω2
k

1−D
D (1−cos(ωkc α))

e−dω
2
k
β−(cos(ωkc α)+Dcωk sin(ωkc α))

+ gk
ω2
k

1−D
D ,

Bk = −Dc · ωk ·
ϕk−

gk
ω2
k

1−D
D (1−cos(ωkc α))

e−dω
2
k
β−(cos(ωkc α)+Dcωk sin(ωkc α))

,

Ck =
ϕk−

gk
ω2
k

1−D
D (1−cos(ωkc α))

e−dω
2
k
β−(cos(ωkc α)+Dcωk sin(ωkc α))

.

Let’s introduce the notation:

λ−1k = e−Dω
2
kβ −

(
cos
(ωk
c
α
)
+Dcωk sin

(ωk
c
α
))

(3.13)

µk = 1− cos
(ωk
c
α
)
.

Then 
Ak = λk

(
ϕk − gk

ω2
k

1−D
D µk

)
+ gk

ω2
k

1−D
D ,

Bk = −Dcλk · ωk ·
(
ϕk − gk

ω2
k

1−D
D µk

)
,

Ck = λk

(
ϕk − gk

ω2
k

1−D
D µk

)
.
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Substituting the found coefficients (3.10) and (3.11) we obtain a formal
solution, imagining that the given function:

uk(t) = λk

(
ϕk −

gk
ω2
k

1−D
D

µk

)
e−Dω

2
kt +

gk
Dω2

k

, 0 < t < β, (3.14)

uk(t) =

(
λk

(
ϕk −

gk
ω2
k

1−D
D

µk

)
+
gk
ω2
k

1−D
D

)
cos
(ωk
c
t
)
−

−Dcλk · ωk ·
(
ϕk −

gk
ω2
k

1−D
D

µk

)
sin
(ωk
c
t
)
+
gk
ω2
k

, −α < t < 0. (3.15)

Consider (3.14) i.e. let’s rewrite it like this:

uk(t) = λkϕke
−Dω2

kt +
gk
ω2
k

(
1

D
− µkλk

1−D
D

e−Dω
2
kt

)
, 0 < t < β,

let’s introduce the notation:

dk(t) =
1

D
− µkλk

1−D
D

e−Dω
2
kt.

Then (3.14) takes the following form:

uk(t) = λkϕke
−Dω2

kt +
gk
ω2
k

dk(t), 0 < t < β. (3.16)

Now we will solve the inverse problem, with the given condition (2.7), i.e. if
uk(β) = ψk find g(x). The uniqueness of the solution (2.1)-(2.7) was proved
in [29], for f(t) = 1 and for D = 1

c2 . Consider the discontinuous case of
coefficients, i.e. D 6= 1

c2 .
Using condition (2.7) and found formal solution (3.16), we find gk

gk = ω2
k

(
ψk
dk(β)

− λkϕke
−Dω2

kβ

dk(β)

)
. (3.17)
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From here we obtain the solution of the given inverse problem:

u(x, t) =



∞∑
k=1

(
λkϕke

−Dω2
kt + gk

ω2
k
dk(t)

)
sin(ωkx), 0 < t < β

∞∑
k=1

((
λk

(
ϕk − gk

ω2
k

1−D
D µk

)
+ gk

ω2
k

1−D
D

)
cos
(
ωk
c t
)
−

−Dcλk · ωk ·
(
ϕk − gk

ω2
k

1−D
D µk

)
sin
(
ωk
c t
)
+ gk

ω2
k

)
sin(ωkx),−α < t < 0

(3.18)

and

g(x) =

∞∑
k=1

gk sin(ωkx) =

∞∑
k=1

ω2
k

(
ψk
dk(β)

− λkϕke
−Dω2

kβ

dk(β)

)
sin(ωkx) (3.19)

Remark 3.1. It should be noted that the following conditions must be
fulfilled:

λ−1k 6= 0 and dk(β) 6= 0

for all k ∈ N .

Remark 3.2. The problem considered in this article is of an applied nature
and describes the movement of gas in a pipe and outside the pipe, where
discontinuity coefficients: D is the diffusion coefficient, and , а c is the gas
velocity.

First we check the condition λ−1k 6= 0. Indeed,

λ−1k = e−Dω
2
kβ −

(
cos
(ωk
c
α
)
+Dcωk sin

(ωk
c
α
))

= e−Dω
2
kβ−

−
√
1 + (Dcωk)2 sin

(
ωk
c
α+ arcsin

(
1√

1 + (Dcωk)2

))
Let α = lcp, p ∈ N , β ∈ R.

|λ−1k | =

∣∣∣∣∣e−Dω2
kβ −

√
1 + (Dcωk)2 sin

(
ωk
c
α+ arcsin

(
1√

1 + (Dcωk)2

))∣∣∣∣∣ =
=
∣∣∣e−Dω2

kβ ± 1
∣∣∣ ≥ C0 > 0,
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where C0 = const.
Now let α = lc nm , n,m ∈ N , and (n,m) = 1 β ∈ R.

|λ−1k | =

∣∣∣∣∣e−Dω2
kβ −

√
1 + (Dcωk)2 sin

(
πk

n

m
+ arcsin

(
1√

1 + (Dcωk)2

))∣∣∣∣∣ ,
kn is divided by m with remainder, kn = sm+ r, s, r ∈ N ∪{0},0 ≤ r < m.

|λ−1k | =

∣∣∣∣∣e−Dω2
kβ −

√
1 + (Dcωk)2 sin

(
π
r

m
+ arcsin

(
1√

1 + (Dcωk)2

))∣∣∣∣∣ ,
Then, due to arcsin

(
1√

1+(Dcωk)2

)
→ 0 and 0 ≤ πr

m < π, the condition

follows, |λ−1k | ≥ C0 > 0 i.e. |λk| ≤ C0.
Now let’s evaluate dk(β) 6= 0.

|dk(β)| =
∣∣∣∣ 1D − µkλk 1−DD e−Dω

2
kβ

∣∣∣∣ ≥ ∣∣∣∣ 1D − 2C0

∣∣∣∣1−DD
∣∣∣∣∣∣∣∣ ≥ C1 > 0,

where |µk| =
∣∣1− cos

(
ωk
c α
)∣∣ ≤ 2. To mean |dk(β)| ≥ C1 > 0.

Let the following conditions be satisfied: |µk| =
∣∣1− cos

(
ωk
c α
)∣∣ ≤ 2,

|λk| ≤ C0, |dk(β)| ≥ C1 > 0.
We find the condition for the convergence of the resulting series (3.19)

|g(x)| =

∣∣∣∣∣
∞∑
k=1

gk sin(ωkx)

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

ω2
k

(
ψk
dk(β)

− λkϕke
−Dω2

kβ

dk(β)

)
sin(ωkx)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∞∑
k=1

ω2
k

(
ψk
dk(β)

− λkϕke
−Dω2

kβ

dk(β)

)∣∣∣∣∣
≤
∞∑
k=1

ω2
k

|ψk|
|dk(β)|

+

∞∑
k=1

ω2
k

|λk||ϕk|e−Dω
2
kβ

|dk(β)|

≤
∞∑
k=1

ω2
k

|ψk|
C1

+

∞∑
k=1

ω2
k

C0|ϕk|e−Dω
2
kβ

C1

Let us introduce the notation
C1 = π

lC1
, C2 = π

lC1
C0
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Then

|g(x)| ≤ C1

∞∑
k=1

k2|ψk|+ C2

∞∑
k=1

k2|ϕk|e−Dω
2
kβ

According to the Cauchy-Bunyakovsky inequality, we obtain the following

|g(x)| ≤ C1

√√√√ ∞∑
k=1

1

k2

√√√√ ∞∑
k=1

|ψ(3)
k |2 + C2

√√√√ ∞∑
k=1

k2e−Dω
2
kβ

√√√√ ∞∑
k=1

|ϕk|2 ≤

≤ C1||ψ(3)
k ||L2(0.l) + C2||ϕ(1)

k ||L2(0.l),

where ϕ(1)
k = 2

lωk

∫ l
0
ϕ′(x) cos (ωkx) dx, ψ

(3)
k = 2

lωk

∫ l
0
ψ′′′(x) cos (ωkx) dx.

Thus, we proved the following theorem for inverse problem 1, i.e., f(t) =
1.

Theorem 3.3. Suppose the conditions of remark 3.1 and
(B1) ϕ ∈ C[0, l], ϕ′(x) ∈ L2(0, 1); ϕ(0) = ϕ(l) = 0;
(B2) ψ ∈ C2[0, l], ψ′′′(x) ∈ L2(0, 1); ψ(0) = ψ(l) = 0, ψ′′(0) = ψ′′(l) = 0

are fulfilled.
Then the inverse problem (2.1)-(2.7) has a unique solution, which is

represented by series (3.18), (3.19), and the following stability estimate is
also valid

||g(x)||C[0,l] ≤ C1||ψ(3)
k ||L2(0.l) + C2||ϕ(1)

k ||L2(0.l).

4 Solutions of the inverse problem for f(t) 6=
const.

Now consider the case, f(t) 6= const. We solve equations (3.5) and(3.6) for
this case.

Solving equations (3.5) и (3.6), we obtain the following solutions:

uk(t) = Cke
−Dω2

kt + gk

t∫
0

e−Dω
2
k(t−τ)f(τ)dτ, t > 0 (4.1)

uk(t) = Ak cos
(ωk
c
t
)
+Bk sin

(ωk
c
t
)
+
gk
cωk

t∫
0

f(τ) sin
(ωk
c
(t− τ)

)
dτ, t < 0

(4.2)
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Using conditions (3.7) and(3.12) we find the unknown coefficients:

Ck = Ak,
−CkDω2

k + gkf(0) =
ωk
c Bk

Cke
−Dω2

kβ + gk
β∫
0

e−Dω
2
k(β−τ)f(τ)dτ −Ak cos

(
ωk
c α
)
−

+Bk sin
(
ωk
c α
)
+ gk

cωk

−α∫
0

f(τ) sin
(
ωk
c (α+ τ)

)
dτ = ϕk

Received a system of linear equations for determining unknown coefficients.
We solve a system of linear equations and using the notation (3.13), we

get:

Ck = λk

[
ϕk −

cgk
ωk

f(0) sin
(ωk
c
α
)
− gk

β∫
0

e−Dω
2
k(β−τ)f(τ)dτ−

− gk
cωk

−α∫
0

f(τ) sin
(ωk
c
(α+ τ)

)
dτ

]
,

Ak = λk

[
ϕk −

cgk
ωk

f(0) sin
(ωk
c
α
)
− gk

β∫
0

e−Dω
2
k(β−τ)f(τ)dτ−

− gk
cωk

−α∫
0

f(τ) sin
(ωk
c
(α+ τ)

)
dτ

]
,

Bk = −cDωkλk

[
ϕk −

cgk
ωk

f(0) sin
(ωk
c
α
)
− gk

β∫
0

e−Dω
2
k(β−τ)f(τ)dτ−

− gk
cωk

−α∫
0

f(τ) sin
(ωk
c
(α+ τ)

)
dτ

]
+
cgk
ωk

f(0).

Substituting the found coefficients (3.10) and (3.11) into (??) and (??)
respectively we obtain a formal solution, imagining that g(x) the given
function.
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For t > 0 we rewrite the solution as follows:

uk(t) = λkϕke
−Dω2

kt − gk

[(
c

ωk
f(0) sin

(ωk
c
α
)
+

β∫
0

e−Dω
2
k(β−τ)f(τ)dτ+

+
1

cωk

−α∫
0

f(τ) sin
(ωk
c
(α+ τ)

)
dτ

)
λke
−Dω2

kt −
t∫

0

e−Dω
2
k(t−τ)f(τ)dτ

]
,

(4.3)

let’s introduce the notation:

d̃k(t) =

(
c

ωk
f(0) sin

(ωk
c
α
)
+

β∫
0

e−Dω
2
k(β−τ)f(τ)dτ+

+
1

cωk

−α∫
0

f(τ) sin
(ωk
c
(α+ τ)

)
dτ

)
λke
−Dω2

kt −
t∫

0

e−Dω
2
k(t−τ)f(τ)dτ (4.4)

Then (4.3) takes the following form:

uk(t) = λkϕke
−Dω2

kt + gkd̃k(t).

Now we will solve the inverse problem, with the given condition (2.7), i.e.
if uk(β) = ψk find g(x). Uniqueness of the solution (2.1)-(2.7) has been
proven in [29], for f(t) = 1 and for D = 1

c2 . Consider the discontinuous case
of coefficients, i.e. D 6= 1

c2 and f(t) 6= const.
We use the condition (2.7) and found formal solution (4.3), find gk:

gk =
ψk

d̃k(β)
− λkϕke

−Dω2
kt

d̃k(β)
, (4.5)

where d̃k(β) defined by (4.4).
Let β be such that

d̃k(β) 6= 0. (4.6)

Note, this set is not empty. We have recommended e.g., [2].
From here we obtain the solution of the given inverse problem for the

case f(t) 6= const.
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Theorem 4.1. Let ϕ(x), ψ(x) functions are satisfied the conditions
Theorem 3.3. Besides, f(t) ∈ C[0, T ] and the condition (4.6) satisfies. Then,
there exists a uniquely solution the inverse problem II (2.1)-(2.7), which is
represented by series

g(x) =

∞∑
k=1

gk sin(ωkx),

where gk is defined by (4.4).
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