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Introduction 

In many cities it is planned to build underground 

highways of considerable length, as well as tunnels for 

new high-speed transport. Extremely widespread 

development of the construction of underground main 

pipelines providing transportation of virtually the 

entire volume of produced natural gas, most of the oil 

and various cargoes. Modern transport underground 

structures in accordance with the requirements of 

reliability and durability are among the most important 

objects of underground construction. Along with the 

static calculation of such structures [3] their dynamic 

calculation [1, 2] is necessary. Among the dynamic 

loads and impacts on underground structures in the 

form of tunnels and pipelines, operational transport 

loads and the impact of seismic waves of natural or 

artificial origin should be singled out. Difficulties in 

the calculation of objects in the presence of mobility of 

the load multiply increase in comparison with the 

volume of static calculations. Especially great 

mathematical difficulties appear when taking into 

account the massiveness of the driving loads. The study 

of the dynamics of extended underground structures 

under the action of various perturbations leads to the 

solution of boundary value problems in the mechanics 

of continuous media. [4-6] 

Work in this direction with a sufficiently detailed 

bibliography can be found in monographs [9, 11, 12, 

15] and many other publications are devoted to a 

generalization and systematization of research results 

on a comprehensive study of the dynamic behavior of 

cylindrical shells of various designs. The stationary 

solution of the dynamics of an infinitely long thin 

cylindrical shell immersed in an acoustic medium and 

subjected to an axisymmetric load moving with a 

constant velocity in the axial direction was investigated 

[13], the reaction of an infinitely long cylindrical shell 

in an acoustic medium to the action of a moving 

stepped plane shock wave was considered. The 

solution is given in generalized coordinates without 

taking into account the extension of the middle surface 

of the shell. In [14], such problems are solved by the 

method of integral transformations. Later, hinged-

supported shells were considered in [10], the nonlinear 

dynamics of shells was investigated. In [8], the ax 

symmetric vibrations of a priestesses shell were studied 

under the action of a moving force, where the Bubnov 

- Galerkin method was applied to geometric 

coordinates and the Bogolyubov - Mitropolsky 

coordinate in time coordinate. Starting from the 

equation of shell motion [5], we studied the dynamics 

of a priestess’s cylinder under the action of two types 

of loads: a concentrated normal force moving along a 

circle at a constant velocity, and a point wise normal 

force moving along the axis of the cylinder. 

An approximate model approach for determining 

vibrations on a free surface from moving loads in 

reinforced tunnels of a rectangular and circular profile 

has been applied [7]. The action of a mobile periodic 

load on a circular cylindrical cavity in an elastic half-

space for subsonic speeds of load motion was 

considered in [14] where the motion of a half-space 

described the dynamic equations of the theory of 

elasticity [5] in Lame potentials. To solve problems in 

this paper, a model research method is used.  

The tunnel is modeled as an infinitely long 

circular cylindrical cavity located in a homogeneous 

and isotropic linearly elastic half-space parallel to its 

horizontal boundary. The cavity can be supported by a 

homogeneous or layered elastic shell (in which case the 

tunnel can be considered as an underground pipeline). 

The no stationary load acts on the surface of the cavity 

or on the inner surface of the shell reinforcing cavity. 

The speed of the load is assumed to be subsonic. 

 

2. Statement of the problem for a circular 

tunnel. 

Using the model approach for research, we will 

represent the tunnel as an infinitely long circular 

cylindrical cavity with a radius r = R, located in a linear 

viscoelastic, homogeneous and isotropic half-space x ≤ 

h (Figure 1) parallel to its horizontal boundary (the 

earth's surface). We define the reaction of a half-space 

on a moving with a constant subsonic velocity c along 

the cavity surface in the direction of the Z-axis of the 

load P. 

 

 

Figure 1. The calculated scheme of the reinforced tunnel and underground pipeline 

For this, we use the equations of motion of an 

elastic medium in vector form [16, 17]  
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Here ),,( zуx uuuu - vector of displacement of 

points of the medium; j  - material density; , ,x у zu u u  -

displacement components; jv  - is the Poisson's ratio; 
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where 
jЕ – Operational modulus of elasticity, which 

have the form [25, 26].  

( ) ( ) ( ) ( )0

0

t

j j EjE t E t R t t d    
 

= − − 
 


         (2) 

( )t - arbitrary time function; ( )EjR t − - 

relaxation core; 
0 jE - instantaneous modulus of 

elasticity; We assume the integral terms in (5) to be 

small, then the functions ( ) ( ) Ri tt t e   −= , where ( )t - 

a slowly varying function of time, R - real constant. 

Further, applying the freezing procedure [14], we note 

relations (2) as approximations of the form  

( ) ( )1 С S

R RE E i    = −  −  
, 

where 

( ) ( )


=
0

cos  dR RR

C ,

( ) ( )


=
0

sin  dR RR

S  

respectively, the cosine and sine Fourier images of the 

relaxation core of the material. As an example of a 

viscoelastic material, we take three parametric 

relaxation nuclei ( )  −−= 1/ tAetR t . 

On the influence function  the usual 

requirements of inerrability, continuity (except for 

), sign of uncertainty and monotony: 

 
u


 - the vector of displacements of the 

environment. 

Since the steady-state process is considered, the 

strain pattern is stationary with respect to the moving 

load. Therefore, it is convenient to move to a moving 

coordinate system  = z - ct, connected with the load P. 

Then equation (1) can be rewritten in the form 
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Here Mp = c/cp,  Ms = c/cs - Mach numbers; 

( )  2+=pc , =sc  – complex propagation 

velocities of expansion waves - compression and shear 

in a medium. 

           

3. Tasks of the action of mobile loads on an 

Unreinforced tunnel. 

In the theoretical aspect, the solution was based 

on the papers [23, 24] In [25], the first and second 

boundary-value problems of the theory of elasticity for 

a half-plane with a point source of stationary waves 

concentrated within it, the potential of which is 

represented in terms of cylindrical functions, are 

solved by the method of expanding potentials on plane 

waves. And in [24] using this approach, the problem of 

the stationary load on the contour of a circular hole in 

a half-space was solved. Using the idea of these papers 

on the superposition of solutions and the re-expansion 

of plane waves into series in cylindrical functions, in 

[25], in contrast to the exact analytical solution for the 

subsonic case, when the velocity of a moving load is 

less than the velocity of the Rayleigh waves.  

Since the steady-state process is considered, the 

strain pattern is stationary with respect to the moving 

load. Therefore, it is convenient to move to the mobile 

coordinate system  = z – ct, connected with the load 

P. 

Then equation (1) can be rewritten in the form 
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When the load acts on the cavity surface, we 

have 

== = ,,),,( rjPjRrrj
,     (5) 

where rj – components of the stress tensor in a 

medium, Pj(,) – components of the intensity of the 

mobile load P(,). 

Since the boundary of the half-space is free from 

loads, x = h 

0=== xxyxx
.                   (6) 

We transform equation (1) by expressing the 

displacement vector of an elastic medium through 

Lame potentials 

rotgrad 1 +=u                           (7) 

Potential  can be represented in the form [27] 

 ( ) += ee 32 rot ,                       (8) 

where e  «ort axis ». 

With this in mind, (5) takes the form 

 
( ) ( ) ++= eeu 321 rotrotrotdivgrad .(9) 

It follows from (3) and (8) that the potentials j  

satisfy the modified wave equations 

3,2,1,
2

2
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Here М1 = Мp, М2 = М3 = Мs. 

We express the components of the stress and 

displacement of the material point through the 

potentials j. 

The components of the vector u (7) in cylindrical 

(8) and Cartesian (9) coordinate systems [24-26]: 
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Where 22 1 ss Mm −= .   

Volumetric strain  

1
2div == u .                (12) 

Using Hooke's law, taking into account (9), (11), 

we find expressions for the stress tensor components in 

cylindrical and Cartesian coordinates 
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Thus, to determine the components of the stress-

strain state of the medium, it is necessary to solve 

equations (9) together with the boundary conditions. 

In cases where circular tunneling or underground 

pipelines are thin-walled structures, the considered 

model of the tunnel can be adopted as a design model, 

with the reinforcement of the cavity by a thin elastic 

cylindrical shell of thickness h0 (Figure 1). Because of 

the small thickness of the shell, we assume that the 

surrounding array is in contact with the shell along its 

median surface. The load P, moving with a constant 

subsonic speed c in the direction of the Z-axis, acts on 

the inner surface of the shell. 

To describe the motion of the shell, we use the 

classical equations of the theory of thin shells [21] 
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where u0z, u0, u0r  are the displacements of the points 

of the middle surface of the shell; Pz, P, Pr - 

components of the intensity of the mobile load P;  

RrrrrRrrRrrzz qqq
===

=== ,, -  
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components of the reaction surrounding the shell 

environment; 0, 0, 0 are the Poisson's ratio, the shear 

modulus and the density of the shell material, 

respectively. In the moving coordinate system, 

equations (13) are rewritten in the form 
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The motion of the half-space is described by the 

dynamic equations of elasticity theory in Lame 

potentials. 

Let's consider two cases of conjugation of a shell 

with an environment: rigid and sliding. In these cases, 

the boundary conditions have the form: 

- At sliding contact 

0= =Rrrj
, = ,j ,  

0r r R rw w= = ,    (14,а) 

- At hard contact 

jRrj uu 0==
, rj ,,=

  
.           (14,б) 

Thus, in this formulation, in order to determine 

the components of displacements and stresses of the 

medium, it is necessary to jointly solve Esq. (13), 

subject to the boundary conditions (14), depending on 

the conjugation condition of the shell with the medium. 

In the moving coordinate system, we apply to the 

equations of motion and the boundary conditions a 

complex Fourier transform of the form [24-26]. 
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2
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Writing general solutions of the transformed 

equations of motion of the tunnel in the form (4) - (15), 

we find the following system of algebraic equations for 

determining the dimensionless transform ants of 

displacements of an intermediate surface  
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The stress at the boundary of the soft layer and 

elastic among (r = b) in the dimensionless form has 

the form: 
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Here  = с/св  is the ratio of the density of the 

environment to the density of the soft layer; 
−−

 ,  - are 

functions of  and .  

We find the following expression for the load 

transformer, which is transferred to the shell from the 

side of the soft layer   
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is 

computed then formula ;2 111 MA −=  ;1112 aA −=  
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110
kk   - Modified Neumann functions; 
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modified Bessel functions; the general solution of the 

equations of the motion of the environment has the 

form 
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His expression for the original transform of the 

normal displacement has the form      
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Defining  ( )5.......2.1= jj
 is obtained from  

keAdet   by replacing j = 20 by the column C with the 

elements {0; 0; 1; 0; 0}. 

 

 

Fig. 2. Shell deflections as a function of thickness. 

After this function ( ) ( ) DA ......  
from (16) can 

be calculated from formulas 
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−iem  minors of the element Аje. For a specific 

value of the load velocity C, the denominators under 

the integral expressions in formulas (14) are 

transcendental functions with respect to  С real 

coefficients depending on C, as well as on the 

mechanical parameters of the shell and the layer. 

Analysis of the integrals of treatment must begin with 

consideration of cases [25] ( ) ,0, 0 =CD   which is 

equivalent to the construction of the dispersion relation 

in the corresponding problem of propagation of free 

waves and the determination of the denominator from 

the dispersion curves of the roots for the chosen 

velocity of the load C. at С< С5 are possible for cases. 

Figure 2 shows the change in the movement of the 

filler, depending on the thickness of the bodies for 

different values of the rigidity of the aggregate. As can 

be seen from the drawing ( = 100, 50,10,2), that for a 

sufficiently rigid layer ( = 100), the deflections of the 

shell essentially decrease [18-20, 21, 22]. For a given 

speed C, there are one or two different denominator 

roots. For some values of C, the denominator has a 

double root. This case corresponds to a minimum of the 

corresponding dispersion curve in Fig. Such a velocity 

is called resonance and is denoted by Сх.  

A resonance effect appears, or which deflections 

and contact pressures tend to infinity. For a given value 

of C, the denominator has no roots on the real axis, as 

seen in Figure 2, this will be either, С<Сф (up to 

resonance mode). At this speed of motion, the 

inversion integrals are not special and can be found by 

effective numerical methods. 

Dividing the integral (17) into two terms  
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=
0

10
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dxw
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  and    
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( ) =
2

1
10

1 


dxw                      (18) 

The value of the integral (18) was found by the 

numerical method [23]. When the integral is calculated 

by the Romberg method, it is necessary to repeatedly 

calculate the integrand function. The inverse Fourier 

transform (29) was numerically fulfilled. It is shown 

that at an integration step of 1.01, the error of the 

procedure does not exceed 0.3-0.5%.   

 

4. Conclusions. 

1. From the analysis of these results it follows that 

for any conjugation of the shell with the array, the 

reinforcement of the tunnel leads to a decrease in radial 

displacements and compressive axial stresses ().  

The effect of the shell on the nature of the change in 

normal stresses () is somewhat different: these 

stresses increase in the central parts of the tunnel arch. 

As the thickness and stiffness of the sheath material 

increase, the displacement and stresses decrease. 

Contact conditions also affect the stresses and 

permeations of the contour of the section. 

2. All the considered load velocities, with a 

relatively small period T = р / 4 and the fluidity of the 

medium (0 <A <0.48), the components of the stress-

strain state of the earth's surface are practically zero. 

With a decrease in the period (T/ h <0.4), as 

calculations have shown, an entire region of the array 

with zero components begins to form from the earth's 

surface, which covers the entire array with a 

sufficiently small period, except for a small thickness 

of the layer around the tunnel. 
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