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Abstract. In this article, from a scientific point of view, the issues of resistance to mechanical loads acting on on-board 
radio-electronic devices equipment (R.E.E.) are considered, where the necessary reduction of the impact of vibration loads 
is proposed to ensure resistance to mechanical influences. It is also said that in general, there are various means of protection 
against vibrations of the R.E.E., which include dampers, springs, gaskets, shock absorbers. To achieve this goal, you need 
to solve the following tasks: analyze the vibration of the R.E.E. unit (with and without attached masses) from vibration 
effects; to construct a mathematical model of the influence of the R.E.E.) parameters on the resonant state of the mechanical 
system, as well as on the magnitude of the oscillation amplitude. The aim of the work is to reduce the vibration of the radio-
electronic unit and to develop a methodology for the influence of the attached mass, as well as changes in various geometric 
parameters on the resonant frequency and the attenuation decrements of the mechanical system. In solving the problem of 
R.E.E. from external vibration exposure at resonant frequencies, finite difference methods and the Godunov orthogonal 
run method were used. An algorithm for determining the resonant frequency and the displacement amplitude of the 
mechanical system under consideration is proposed. The application of the proposed mathematical model allows to reduce 
the total vibration loads of the R.E.E.to 25%. 

INTRODUCTION 

To reduce the impact of vibration loads, there are various means of protection against R.E.E. vibrations: dampers, 
springs, gaskets, shock absorbers. The most effective among them are active shock absorbers, in which, in addition to 
damping elements, there are elements with an additional source of energy, which allows you to change the stiffness 
of the suspensions, and, thereby, reduce the impact of vibration loads on the R.E.E. Such shock absorbers are designed 
to reduce the amplitude of vibrations not only at resonant frequencies, but also in the entire required frequency range, 
which entails the complication of structures due to the introduction of additional vibration measurement tools [1, 2]. 
Reducing the vibration levels of radio-electronic equipment R.E.E. is an urgent task in the aircraft industry [3,4]. For 
the calculation of mechanical processes occurring in radio-electronic structures, it is presented in the form of a certain 
model [5, 6]. When developing a computational model, it is necessary, if possible, to strive to avoid making any 
fundamental adjustments to the physical phenomena under consideration in order to avoid uncontrolled errors. 
Vibration loads experienced by devices and apparatuses cause mechanical stresses in their elements. To protect the 
equipment from dynamic impacts, various dampers and damping elements are widely used [7, 8]. According to the 
nature of the application of external loads, vibration isolation of R.E.E. is conditionally divided into active and passive 
[9, 10]. If the object itself is a source of vibration, then it is necessary to isolate it from the reference base [11, 12]. 
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Electronic equipment is often modeled as a monolithic block. These include blocks in which the gaps between the 
radio components are filled with compound, foam, rubber, etc. In such blocks there are no voids in the model – the 
grid for them is three-dimensional (Fig. 1) [13, 14]. In this paper, we consider the oscillations of a viscoelastic spatial 
block under the influence of periodic loads. 

MATERIALS AND METHODS 

Problem Statement and Methods for Solving the Problem  

The block and the radio-electronic equipment attached to its mass is a rectangular multilayer parallelepiped (or 
plate) with concentrated masses. The system of differential equations is obtained using the principle of possible 
displacements [15]: 

 
 0=+ IF AA δδ . (1) 

 
Where FAδ - variations of internal stresses 

 

dVA ij
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 – potential energy; σij - components of the stress tensor, εij - components of the strain tensor, V -volume. 

The relationship between stress and strain satisfies the following relations 
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Where f(t) – is an arbitrary function of time; ( )τλ −tR  and ( )τμ −tR  the relaxation kernel; 01,01 μλ –is the 

instantaneous modulus of elasticity. As an example of a viscoelastic material, we take the three-parameter relaxation 
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Where 
)(k

ijσ  - is the stress tensor of the k-th layer; kiu  - the displacement vector of the k-th layer; kiF  - the density 

dector of the mass forces of the k-th layer; kρ - the density of the k-th cylindrical layer, t-time. 

 

  
a) b) 

FIGURE 1. Calculation scheme: a) a three-layer block without attached masses. b) a block with attached masses. 

 
The system of differential equations (1) and relations (2) and (3) are closed with boundary conditions that are put 

in contact between the blocks kzx = : 
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A pulse load of the following type is placed on the outer surface of the plate. 
 

 
( ) ( ) ( ): ( , , ) ; 0 ; 0.k k k
zz xy zxz b P x y zσ τ τ= = = =

 (6) 
 

The pressure in the case of a local award is represented by the dependence on coordinates and time in the form. 
 

 0( , , ) , 0 ,0i t
b pP b x z P e t T z lν ξ−= ≤ ≤ ≤ ≤

 (7) 
 

Where - is the amplitude value of the external vibration pressure, T0 - is the period of pressure action; l - is the 

length of the cylinder; - is the length of the cylinder affected by the pulse load and pξ  is a constant value. The desired 

functions in the equations of the system (1) – (6) depend on three spatial variables and time.  
For proper (or steady - state forced) oscillations of the variation equation in symbolic form, it can be represented 

as. 
 

 
0 2( ( ), ) 0njG U xδ ω =

 (8) 
 

We write out a concrete representation of the functional G, for example, for a package of rectangular plates with 
point constraints: 
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Where ω - is the complex frequency, , ,n n nh a b  -is the thickness and linear dimensions of the n - the plate, ,q q
n nx y

- is the coordinates of the n - the concentrated mass, ,l l
n nx y -is the coordinates of the l – the spring (shock absorber), - 

coordinates of the elastic (viscoelastic) support. If the n - the plate, l- the l′- the spring, and the y- the support are 

viscoelastic, then they are represented n, ,n l l nD C ′  by the following formulas: 

 

n n n n( ), ( ), ( )n n n R l l l R l n l n l RD D f C C f fω ω ω′ ′ ′= = =
 

 
Where ( ) 1 ( ) ( )R c R s Rf iω ω ω= −Γ − Γ  - is a complex function whose numerical coefficients depend on the parameters 

of the relaxation core of the corresponding viscoelastic elements, 3 2/ (12(1 ))n n n nD E h ν= −  
n n,l lC C′ -  is the generalized 

instantaneous stiffness of the n – the plate, l- the l′-the shock absorber, and the support, respectively. In the elastic 
case, where is the generalized stiffness of the n-the plate, l - the spring, and the support, respectively. A similar 
functional can be written for a system of rotation shells. The components of the displacement vector 0 ( )njU x are the 

desired functions of the vibrational equation (10) and must satisfy the boundary conditions on the surfaces bo
nΩ , i.e. 

 

 
0 ( ) 0, bo

n nj nLU x x= ∈Ω
 (9) 

 

Where 
s
nx – are the coordinates of the s - the support of the n - the body. If a part of the supports is pinched, then 

the following conditions will be added. 

 

0 ( )
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α
∂
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Where 
s
nα  – is the direction of the unit vector along which the rigid pinching of the body is carried out at 

s
nx  the 

point. 
In the program implementing the algorithm, condition (11) taken into account only for the shells of rotation. The 

presence of rigid racks between the n and (n+1) - the body is taken 2N ≥  into account by the relations. 
 

 
0 0

1,( ) ( ) 0 ( 1,... ; 1,.. ),r r
nj n n j n nU x U x r R j J+− = = =

 (11) 
 

Where 
rx  - is the coordinate of the r - the rack, 

nR  - is the number of racks between the n, (n+1) - the bodies. In 

the case of 1N =  condition (12), none. Thus, the displacement vector is additionally subject to restrictions of the type 
(10)-(12). The superimposition of point connections on the system taken into account using the Lagrange multiplier 
method. Then the vibrational equation (8) rewritten as. 
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Where , ,s s s
nj nj njkλ μ  – are the Lagrange multipliers. It is necessary to find the spectrum of complex natural 

frequencies k k k
R Iiω ω ω= + , where 

k
Rω  – are the frequencies, and 

k
Iω  – are the damping coefficients of the natural 

damped oscillations. 

RESULTS AND DISCUSSION 

The approximate solution of the vibrational equation (13) is sought in the form of an approximating form composed 
of fundamental functions that satisfy both the equation and the given geometric boundary conditions on the surfaces 

of 
fr
nΩ  each body. It is assumed that the functions ( )k

nj xΦ  for such bodies are known (for rectangular plates and 

circular cylindrical shells, this is the fundamental sequence of beam functions). Then the approximating forms can be 
constructed as a finite expansion over these known functions: 
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Where 
k
njγ  – are the desired complex coefficients. 

You can ( )k
nj xΦ  pre-normalize it. 

fr
nΩ  The sum (14) satisfies the boundary conditions automatically due to the 

choice of terms. By varying the generalized coordinates , , ,s s s s
n j n j n j n jkλ μ γ of equation (13), we obtain a 

homogeneous system of linear equations. The dimension of this system, where, J N J N′ ′⋅ × ⋅ , where, 

1
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N

n n n
n

N S S R N Kα

=

′ = + + + ⋅ , J - is the number of components of the displacement vector
0 ( )njU x . Without giving 

specific calculations, we will write this system in matrix form: 
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Where ξ  – is the vector-column of generalized coordinates; nN  - the number of viscoelastic bodies of the system; 

 – a symmetric, degenerate matrix of generalized masses of the system; , ,n n n
n ln l nA A A′ - square matrices J N J N′ ′⋅ × ⋅  

of dimension consisting of zeros , except for the sub matrices of instantaneous stiffness’s of the n - the viscoelastic 
body of the l- the shock absorber and the l/- the viscoelastic support, respectively; A-a symmetric matrix, (its sub 
matrix A0 of dimension J K J K⋅ × ⋅ ) is the generalized total stiffness of the elastic elements of the system, and 

T
H bA A=  the sub matrices take into account the kinematic conditions of the rigid elements imposed on the system 

point connections. The most effective way to solve such equations is the Muller method, which is used here. Without 

revealing the frequency determinant, we calculate at each step only its value for a fixed value R Iiω ω ω= + . Damping 

coefficients-allow us to judge Iω  the damping properties of the system under consideration. In engineering, the 

logarithmic decrement of vibration damping used to estimate the rate of damping of oscillatory processes. It related 
to the damping coefficient by the following formula: 
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A system of rectangular plates with point constraints is considered. The relaxation kernel for deformable elements 

(shock absorbers) is chosen in the form 
1( ) tR t Ae tβ α− −= , where , ,A α β   - are the parameters of the kernel. The 

viscosity of the shock absorber is assumed to be such that its creep deformation during the quasi-static process is a 
small fraction of the total (~12%). 

Table 1 shows comparisons of the first two natural frequencies 1 2,ω ω  of the elastic shell with the results of [15]. 

A twentyfold increase in the shell thickness (third row of the table) increases the second and first natural frequencies 
by 3.6 and 3.7 times, respectively. 

 

TABLE 1. Calculation results for the two lowest frequencies. 
h       
0.01 0.0987 0.0872  0.142 0.135  
0.1 0.274 0.26  0.281 0.27  
0.2 0.339 0.322  0.502 0.48  

 
For this case, the kernel parameters are as follows: 0.0070, 0.1, 0.05A α β= = = . The block is a rectangular 

parallelepiped (Fig. 1) made of Styrofoam ( ./105.3 26 mN⋅=λ 26 /105.1 mN⋅=μ 23 /1015.0 mN⋅=ρ ,

1.0;05.0;048.0 === αβA ). Block dimensions 70.20.140 mm. Along the outer perimeter there is an 

aluminum belt, with the help of which the unit is attached to the body of the device. 
 

 

FIGURE 2. Design scheme of the monolithic block.  
 

Since aluminum has a modulus of elasticity three orders of magnitude greater than foam, the deformation of 
aluminum in the direction of the axis is not taken into account. The foam contains small radio components, the 
influence of which on the amount of elastic deformations of the foam also not taken into account. The increase in the 
mass of the foam due to radio components taken into account using the mass coefficient m. When building a model, 
the block is divided into finite elements, the dimensions of which are equal (Fig. 2)

3 3 3
1 2 31 10 ; 0,20 10 ; 1 10 .h m h m h m− − −= ⋅ = ⋅ = ⋅   
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FIGURE 3. Direction of transverse movements.  
 

Thus, 70, 80 and 140 grid steps are laid along the length, width and height of the block, respectively, which 
provides a relative error in calculating the oscillation amplitude with a minimum coefficient of the difference scheme 

2
2

11 1 0,05
r

h
μ

ρ
= =  within 10%. 

 

 

FIGURE 4. Direction of shear displacements in the Cartesian coordinate system.   
 

TABLE 2. The value of the movements of the monolithic block of the central point under vibration influences. 
Z 0 1 2 3 4 5 6 
0 0.0 0.0 0.0 00 0 0 0 
1 0.01197 0.01036 0.00598 0.0 -0.00598 -0.01036 -0.01597 
2 0.02324 0.02013 0.01162 0.0 -0.01162 -0.02013 -0.02322 
3 0.03316 0.02872 0.02058 0.0 -0.01638 -0.02836 -0.03381 
4 0.04115 0.03564 0.02338 0.0 -0.01658 -0.03558 -0.04218 
5 0.04675 0.04049 0.02337 0.0 -0.02058 -0.04059 -0.04567 
6 0.04963 0.04298 0.02481 0.0 -0.02337 -0.04371 -0.04732 
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Z 0 1 2 3 4 5 6 
7 0.04963 0.04298 0.02337 0.0 -0.02481 -0.04981 -0.04116 
8 0.04675 0.04049 0.02058 0.0 -0.02537 -0.04337 -0.04231 
9 0.04115 0.03564 0.01658 0.0 -0.02658 -0.03647 -0.03036 
10 0.03316 0.02872 0.01162 0.0 -0.01658 -0.02783 -0.02754 

 
Table 2 shows the value of the displacements of the monolithic block of the central point under vibration influences 

At this point there is no node, so the displacements are calculated as the average of the arithmetic displacements in 
the four neighboring nodes (4,4,7), (4,5,7),(4,4,8) and (4,5,8). According to the above C++ program, calculations were 
performed in 450 steps. To calculate the resonance for bending vibrations, the approximate shape of the oscillations 
is set as the initial conditions for the maximum deviation of the nodes of the grid model from the equilibrium position. 
To do this, the initial values of the displacements at the two initial moments of time can be set distributed over the 
volume of the block in the form of a sinusoid (Fig. 3 and 4). According to the compiled program, the calculation was 
made for 10-3 in time. 

 

 

FIGURE 5. Dependences of changes in the displacement of the coordinate (the central point of the block at =424.671.   
 

Fig. 5 shows the graphs of the movements of V nodes located on the axes of symmetry of the block at different 
times when the oscillations R.E.E. reached the amplitude values. The graphs show how the natural form of oscillations 
is formed at the frequency of the first harmonic. 

 

 

FIGURE 6. Dependences of the change in the dynamic coefficient on the frequency with elastic viscoelastic fastening to 
supports (rubber gaskets) .1-A = 0.0078; 2. A = 0.0048.  
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As a material, we used foam E=2.107N/m2. There are small radio components, the influence of which on the value 
of elastic deformations of the foam not taken into account. The figures correspond to the case when the mass of radio 
components was not taken into account. Figure 6 shows graphs of the coefficient of dynamism of the central point of 
the block in time, taking into account the addition of mass. In the first case, all the mass coefficients were taken equal 
to one, which made it easier to check the stability of the calculation process and analyze the results. During the 
oscillation period is equal to 2.3460 s, the frequency f=424.671 Hz. At the beginning of the calculation, the oscillations 
are very different from the sinusoid, since the initial shape of the oscillations is given approximately, especially when 
taking into account the mass of radio components. The fig. 6 shows that with an increase in the viscosity of R.E.E. 
amplitude, the maximum value of the dynamic coefficient decreases to 10%.  In the process of oscillation, the higher 
harmonics, due to the consideration of viscosity, are attenuated and the first harmonic is released. Graphs of the 
displacements of V nodes located on the axes of symmetry of the block at different times when the oscillations R.E.E. 
reached the amplitude values are shown. Now we study the vibrations of the block, taking into account the attached 
masses and external influences are kinematic (applied on the basis of vibrational displacement). Fig. 7 shows graphs 
of the movement of the block node from the frequency, where 1 is the mass located at the central point 2 and 3 is the 
mass located at the extreme points (Fig. 6). Radio components are available with different weights, which is taken 
into account in the calculation using the additional mass coefficient. 

 

 

FIGURE 7. Dependence of the dynamic coefficient change on the frequency.  
 
Fig. 8 shows the graphs of the movements of U and V of the central point of the block in time. Under the influence 

of pulsed loads in the form of unit, Heaviside functions. The dimensions of the plate are 140x100x2 mm. The steps of 
the elements are selected as h_ , Next, you need to determine the value of the 
time step from the stability condition of the numerical solution and the values of the coefficients included in the finite 
element scheme.  It can be seen that the maximum value of mixed decreases over time. The foam contains small radio 
components, the influence of which on the amount of elastic deformations of the foam also not taken into account. 

 

 

FIGURE 8. Change of longitudinal and transverse displaced points of the block depending on time 4.  
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CONCLUSIONS 

Thus, the paper developed a solution method and an algorithm for determining the resonant state of the R.E.E. 
block from vibration loads, the analysis of the amplitude-frequency response showed a satisfactory convergence of 
the calculation using the finite difference method. Taking into account the viscosity of the shock absorber block (plate) 
material reduces the displacement amplitudes by 15% to 20%. It was also found that the presence of rubber shock 
absorbers reduces the amplitudes of vibrations of the equipment by up to 30%. 
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