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Abstract

We consider the family of 3×3 operator matrices H(K), K ∈ T3 := (−π;π]3 associated
with the lattice systems describing two identical bosons and one particle, another na-
ture in interactions, without conservation of the number of particles. We find a finite
set Λ ⊂ T3 to prove the existence of infinitely many eigenvalues of H(K) for all K ∈ Λ
when the associated Friedrichs model has a zero energy resonance. It is found that for
every K ∈ Λ, the number N(K,z) of eigenvalues of H(K) lying on the left of z, z < 0,
satisfies the asymptotic relation lim

z→−0
N(K,z)| log |z||−1 = U0 with 0 < U0 < ∞, inde-

pendently on the cardinality of Λ. Moreover, we prove that for any K ∈Λ the operator
H(K) has a finite number of negative eigenvalues if the associated Friedrichs model
has a zero eigenvalue or a zero is the regular type point for positive definite Friedrichs
model.
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1 Introduction

The main objective of the present paper is to establish the finiteness or infiniteness of the
number of eigenvalues for a family of 3× 3 operator matrices H(K), K ∈ T3 := (−π;π]3

and especially the asymptotics for the number of infinitely many eigenvalues (Efimov’s
effect case). These operator matrices are associated with the lattice systems describing two
identical bosons and one particle, another nature in interactions, without conservation of
the number of particles.

The Efimov effect is one of the most remarkable results in the spectral analysis for con-
tinuous three-particle Schrödinger operators: if none of the three two-particle Schrödinger
operators (corresponding to the two-particle subsystems) has negative eigenvalues but at
least two of them have zero energy resonance, then the three-particle Schrödinger operator
has infinitely many negative eigenvalues accumulating at zero.

For the first time the Efimov effect has been discussed in [9]. Then this problem has been
studied on a physical level of rigor in [2, 6]. A rigorous mathematical proof of the existence
of Efimov’s effect was originally carried out in [30] and then many works devoted to this
subject, see for example [8, 21, 25, 26, 27]. The main result obtained by Sobolev [25] (see
also [27]) is an asymptotics of the formU0| log |z|| for the number N(z) of eigenvalues on the
left of z, z < 0, where the coefficient U0 does not depend on the two-particle potentials vα
and is a positive function of the ratios m1/m2 and m2/m3 of the masses of the three particles.

In a system of three-particles on three-dimensional lattices, due to the fact that the
discrete analogue of the Laplacian or its generalizations are not rationally invariant, the
Hamiltonian of a system does not separate into two parts, one relating to the center-of-mass
motion and the other one to the internal degrees of freedom. In particular, in this case the
Efimov effect exists only for the zero value of the three-particle quasi-momentum K ∈ T3

(see [1, 3, 13]). An asymptotics analogous to [25, 27] was obtained in [1, 3] for the number
of eigenvalues.

In all above mentioned papers devoted to the Efimov effect, the systems where the
number of quasi-particles is fixed have been considered. In the theory of solid-state physics
[18], quantum field theory [10], statistical physics [16, 17], fluid mechanics [7], magne-
tohydrodynamics [15] and quantum mechanics [28] some important problems arise where
the number of quasi-particles is finite, but not fixed. In [24] geometric and commutator
techniques have been developed in order to find the location of the spectrum and to prove
absence of singular continuous spectrum for Hamiltonians without conservation of the par-
ticle number.

In the present paper we consider the family of 3× 3 operator matrices H(K), K ∈ T3

associated with the lattice systems describing two identical bosons and one particle, another
nature in interactions, without conservation of the number of particles. This operator acts in
the direct sum of zero-, one- and two-particle subspaces of the bosonic Fock space and it is
arising in the spectral analysis of the energy operator of the spin-boson model of radioactive
decay with two bosons on the torus [19, 22]. We discuss the case where the dispersion
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function has form ε(p) =
3∑

i=1
(1− cos(np(i))) with n > 1. We denote by Λ the set of points T3

where the function ε(·) takes its (global) minimum. Under some smoothness assumptions
on the parameters of a family of Friedrichs models h(k), k ∈ T3, we obtain the following
results:

(i) We describe the location of the essential spectrum σess(H(K)) of H(K), K ∈ T3 via
the spectrum of h(k), k ∈ T3;

(ii) We prove that for all K ∈ Λ the H(K) has infinitely many negative eigenvalues
accumulating at zero, if the operator h(0), 0= (0,0,0) has a zero energy resonance (Efimov’s
effect). Moreover, for any K ∈ Λ we establish the asymptotics N(K;z) ∼ U0| log |z|| with
0 < U0 < ∞ for the number N(K;z) of eigenvalues of H(K) lying on the left of z, z <
minσess(H(K)) = 0;

(iii) We prove the finiteness of negative eigenvalues of H(K) for K ∈ Λ, if the operator
h(0) has a zero eigenvalue or a zero is the regular type point for h(0) with h(0) ≥ 0.

We remark that for the Friedrichs model h(0) the presence of a zero energy resonance
(consequently the existence of the Efimov effect for H(K), K ∈Λ) is due to the annihilation
and creation operators.

We point out that the operator H(K) has been considered before in [4, 5, 14] for K =
0 and n = 1, where proven the existence of Efimov’s effect. Similar asymptotics for the
number of eigenvalues was obtained in [4]. We recall that the main results (without proofs)
of this paper has been announced in [20]. This paper is devoted to the detailed proof of
these results.

It surprising that in the assertion (ii) the asymptotics for N(K;z) is the same for all K ∈Λ
and is stable with respect to the number n.Recall that in all papers devoted to Efimov’s effect
for lattice systems the existence of this effect have been proved only for zero value of the
quasi-momentum (K = 0) and for the case n = 1.

The organization of the present paper is as follows. Section 1 is an introduction to the
whole work. In Section 2, the operator matrices H(K), K ∈ T3 are described as the family of
bounded self-adjoint operators in the direct sum of zero-, one- and two-particle subspaces
of the bosonic Fock space and the main results are formulated. In Section 3, we discuss
some results concerning threshold analysis of the Friedrichs model h(k), k ∈ T3. In Section
4 we give a modification of the Birman-Schwinger principle for H(K), K ∈ T3. Section 5 we
establish the finiteness of the number of eigenvalues of the operator H(K), K ∈Λ. In section
6 we obtain the asymptotic formula for the number of negative eigenvalues of H(K), K ∈Λ.

We adopt the following conventions throughout the present paper. Let T3 be the three-
dimensional torus, the cube (−π,π]3 with appropriately identified sides equipped with its
Haar measure. Denote by σ(·), σess(·) and σdisc(·), respectively, the spectrum, the essential
spectrum, and the discrete spectrum of a bounded self-adjoint operator. In what follows we
deal with the operators in various spaces of vector-valued functions. They will be denoted
by bold letters and will be written in the matrix form.

2 Family of 3×3 operator matrices and main results

Let C be the field of complex numbers, L2(T3) be the Hilbert space of square integrable
(complex) functions defined on T3 and Ls

2((T3)2) be the Hilbert space of square integrable
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(complex) symmetric functions defined on (T3)2. Denote by H the direct sum of spaces
H1 = C, H1 = L2(T3) and H2 = Ls

2((T3)2), that is, H =H0⊕H1⊕H2. The spaces H0, H1
andH2 are called zero-, one- and two-particle subspaces of a bosonic Fock spaceFs(L2(T3))
over L2(T3), respectively. It is well-known that if A is a bounded linear in a Hilbert space
H and a decompositionH =H0⊕H1⊕H2 into three Hilbert spacesH0,H1,H2 is given,
thenA always admits [12, 29] a block operator matrix representation

A =

 A00 A01 A02
A10 A11 A12
A20 A21 A22


with linear operators Ai j :H j→Hi, i, j = 0,1,2.

Let us consider the following family of 3×3 operator matrices H(K), K ∈ T3 acting in
the Hilbert spaceH as

H(K) :=

 H00(K) H01 0
H∗01 H11(K) H12
0 H∗12 H22(K)


with the entries

H00(K) f0 = w0(K) f0, H01 f1 =
∫
T3

v0(s) f1(s)ds, (H11(K) f1)(p) = w1(K; p) f1(p),

(H12 f2)(p) =
∫
T3

v1(s) f2(p, s)ds, (H22(K) f2)(p,q) = w2(K; p,q) f2(p,q),

where H∗i j (i < j) denotes the adjoint operator to Hi j and fi ∈ Hi, i = 0,1,2.
Here w0(·) and vi(·), i = 0,1 are real-valued bounded functions on T3, the functions

w1(·; ·) and w2(·; ·, ·) are defined by the equalities

w1(K; p) := l1ε(p)+ l2ε(K − p)+1, w2(K; p,q) := l1ε(p)+ l1ε(q)+ l2ε(K − p−q),

respectively, with l1, l2 > 0 and

ε(q) :=
3∑

i=1

(1− cos(nq(i))), q = (q(1),q(2),q(3)) ∈ T3, n ∈ N.

Under these assumptions the operator H(K) is bounded and self-adjoint.
We remark that the operators H01 and H12 resp. H∗01 and H∗12 are called annihilation

resp. creation operators, respectively. In this paper we consider the case, where the number
of annihilations and creations of the particles of the considering system is equal to 1. It
means that Hi j ≡ 0 for all |i− j| > 1.

To study the spectral properties of the operator H(K) we introduce a family of bounded
self-adjoint operators (Friedrichs models) h(k), k ∈ T3, which acts inH0⊕H1 as

h(k) :=
(

h00(k) h01
h∗01 h11(k)

)
,
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where

h00(k) f0 = (l2ε(k)+1) f0, h01 f1 =
1
√

2

∫
T3

v1(s) f1(s)ds,

(h11(k) f1)(q) = Ek(q) f1(q), Ek(q) := l1ε(q)+ l2ε(k−q).

The following theorem [4, 5] describes the location of the essential spectrum of the
operator H(K) by the spectrum of the family h(k) of Friedrichs models.

Theorem 2.1. For the essential spectrum of H(K) the equality

σess(H(K)) =
⋃
p∈T3

{σdisc(h(K − p))+ l1ε(p)}∪ [mK ; MK] (2.1)

holds, where the numbers mK and MK are defined by

mK := min
p,q∈T3

w2(K; p,q) and MK := max
p,q∈T3

w2(K; p,q).

Let Λ a subset of T3 given by

Λ :=
{

(p(1), p(2), p(3)) : p(i) ∈

{
0,±

2
n
π;±

4
n
π; . . . ;±

n′

n
π

}
∪Πn, i = 1,2,3

}
,

where

n′ :=
{

n−2, if n is even
n−1, if n is odd

and Πn :=
{
{π}, if n is even
∅, if n is odd

Direct calculation shows that the cardinality of Λ is equal to n3. It is easy to check that
for any K ∈ Λ the function w2(K; ·, ·) has non-degenerate zero minimum at the points of
Λ×Λ, that is, mK = 0 for K ∈ Λ.

The following assumption we be needed throughout the paper: the function v1(·) is
either even or odd function on each variable and there exist all second order continuous
partial derivatives of v1(·) on T3.

Since 0 = (0,0,0) ∈ Λ the definition of the functions w1(·; ·) and w2(·; ·, ·) implies the
identity h(0) ≡ h(k) for all k ∈ Λ.

Let us denote by C(T3) and L1(T3) the Banach spaces of continuous and integrable
functions on T3, respectively.

Definition 2.2. The operator h(0) is said to have a zero energy resonance, if the number 1
is an eigenvalue of the integral operator given by

(Gψ)(q) =
v1(q)

2(l1+ l2)

∫
T3

v1(s)ψ(s)
ε(s)

ds, ψ ∈C(T3)

and at least one (up to a normalization constant) of the associated eigenfunctions ψ satisfies
the condition ψ(p′) , 0 for some p′ ∈Λ. If the number 1 is not an eigenvalue of the operator
G, then we say that z = 0 is a regular type point for the operator h(0).
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We notice that in Definition 2.2 the requirement of the existence of the eigenvalue 1 of
G corresponds to the existence of a solution of h(0) f = 0 and the condition ψ(p′) , 0 for
some p′ ∈ Λ implies that the solution f of this equation does not belong toH0⊕H1. More
precisely, if the operator h(0) has a zero energy resonance, then the solution ψ(·) of Gψ = ψ
is equal to v1(·) (up to constant factor) and the vector f = ( f0, f1), where

f0 = const , 0, f1(q) = −
v1(q) f0

√
2(l1+ l2)ε(q)

, (2.2)

obeys the equation h(0) f = 0 such that f1 ∈ L1(T3)\L2(T3) (see Lemma 3.3). If the operator
h(0) has a zero eigenvalue, then the vector f = ( f0, f1), where f0 and f1 are defined by (2.2),
again obeys the equation h(0) f = 0 and f1 ∈ L2(T3) (see proof of the assertion (i) of Lemma
3.2).

As in the introduction, let us denote by τess(K) the bottom of the essential spectrum of
H(K) and by N(K,z) the number of eigenvalues of H(K) on the left of z, z ≤ τess(K).

Note that if the operator h(0) has either a zero energy resonance or a zero eigenvalue,
then for any K ∈ Λ and p ∈ T3 the operator h(K − p)+ l1ε(p)I is non-negative (see Lemma
3.4), where I is the identity operator inH0⊕H1. Hence Theorem 2.1 and equality mK = 0,
K ∈ Λ imply that τess(K) = 0 for all K ∈ Λ.

The main results of the present paper as follows.

Theorem 2.3. Let K ∈ Λ and one of the following assumptions hold:
(i) the operator h(0) has a zero eigenvalue;
(ii) h(0) ≥ 0 and a zero is the regular type point for h(0).

Then the operator H(K) has finitely many negative eigenvalues.

Theorem 2.4. Let K ∈ Λ. If the operator h(0) has a zero energy resonance, then the oper-
ator H(K) has infinitely many negative eigenvalues accumulating at zero and the function
N(K, ·) obeys the relation

lim
z→−0

N(K,z)
| log |z||

= U0, 0 <U0 <∞. (2.3)

Remark 2.5. The constant U0 does not depend on the function v1(·). It is positive and
depends only on the ratio l2/l1.

Remark 2.6. Clearly, by equality (2.3) the infinite cardinality of the negative discrete spec-
trum of H(K) follows automatically from the positivity ofU0.

Remark 2.7. It is surprising that the asymptotics (2.3) doesn’t depends on the cardinality
of Λ, that is, this asymptotics is the same for all n ∈ N. Since Λ|n=1 = {0} in fact, a result
similar to Theorem 2.4 was proved in [4] for n = 1 and K = 0.

3 Some spectral properties of the family of Friedrichs models
h(k)

In this section we study some spectral properties of the family of Friedrichs models h(k),
which plays an important role in the study of spectral properties of H(K).
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Let the operator h0(k), k ∈ T3 acts inH0⊕H1 as

h0(k) :=
(

0 0
0 h11(k)

)
.

The perturbation h(k)−h0(k) of the operator h0(k) is a self-adjoint operator of rank 2,
and thus, according to the Weyl theorem, the essential spectrum of the operator h(k) coin-
cides with the essential spectrum of h0(k). It is evident that σess(h0(k)) = [Emin(k); Emax(k)],
where the numbers Emin(k) and Emax(k) are defined by

Emin(k) :=min
q∈T3

Ek(q) and Emax(k) :=max
q∈T3

Ek(q).

This yields σess(h(k)) = [Emin(k); Emax(k)].
For any k ∈ T3 we define an analytic function ∆(k ; ·) (the Fredholm determinant associ-

ated with the operator h(k)) in C \ [Emin(k); Emax(k)] by

∆(k ;z) := l2ε(k)+1− z−
1
2

∫
T3

v2
1(s)ds

Ek(s)− z
.

The following lemma [4] is a simple consequence of the Birman-Schwinger principle
and the Fredholm theorem.

Lemma 3.1. For any k ∈ T3 the operator h(k) has an eigenvalue z ∈ C \ [Emin(k); Emax(k)]
if and only if ∆(k ;z) = 0.

Since for any k ∈ Λ the function Ek(·) has non-degenerate zero minimum at the points
of Λ and the function v1(·) is a continuous on T3, for any k ∈ T3 the integral∫

T3

v2
1(s)ds
Ek(s)

is positive and finite. The Lebesgue dominated convergence theorem and the equality
∆(0 ;0) = ∆(k ;0) for k ∈ Λ yield

∆(0 ;0) = lim
k→k′
∆(k ;0), k′ ∈ Λ.

For some δ > 0 and p0 ∈ T
3 we set

Uδ(p0) := {p ∈ T3 : |p− p0| < δ}, Tδ := T3 \
⋃
q′∈Λ

Uδ(q′).

The following lemma establishes in which cases the bottom of the essential spectrum is
a threshold energy resonance or eigenvalue.

Lemma 3.2. (i) The operator h(0) has a zero eigenvalue if and only if ∆(0 ;0) = 0 and
v1(q′) = 0 for all q′ ∈ Λ;

(ii) The operator h(0) has a zero energy resonance if and only if ∆(0 ;0)= 0 and v1(q′),
0 for some q′ ∈ Λ.
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Proof. (i) ”Only If Part”. Suppose f = ( f0, f1) ∈ H0 ⊕H1 is an eigenvector of the operator
h(0) associated with the zero eigenvalue. Then f0 and f1 satisfy the system of equations

f0+ 1√
2

∫
T3

v1(s) f1(s)ds = 0

1√
2
v1(q) f0+ (l1+ l2)ε(q) f1(q) = 0.

(3.1)

From (3.1) we find that f0 and f1 are given by (2.2) and from the first equation of (3.1)
we derive the equality ∆(0 ;0) = 0.

Now we show that f1 ∈ L2(T3) if and only if v1(q′) = 0 for all q′ ∈Λ. Indeed. If for some
q′ ∈ Λ we have v1(q′) = 0 (resp. v1(q′) , 0), then there exist the numbers C1,C2,C3 > 0,
α ≥ 1 and δ > 0 such that

C1|q−q′|α ≤ |v1(q)| ≤C2|q−q′|α, q ∈ Uδ(q′), (3.2)

respectively
|v1(q)| ≥C3, q ∈ Uδ(q′). (3.3)

The definition of the function ε(·) implies that there exist the numbers C1,C2,C3 > 0
and δ > 0 such that

C1|q−q′|2 ≤ ε(q) ≤C2|q−q′|2, q ∈ Uδ(q′), q′ ∈ Λ (3.4)

ε(q) ≥C3, q ∈ Tδ. (3.5)

We have∫
T3

| f1(s)|2ds =
| f0|2

2(l1+ l2)2

∑
q′∈Λ

∫
Uδ(q′)

v2
1(s)ds

ε2(s)
+
| f0|2

2(l1+ l2)2

∫
Tδ

v2
1(s)ds

ε2(s)
. (3.6)

If v1(q′) = 0 for all q′ ∈ Λ, then using estimates (3.2)-(3.5) we obtain that∫
T3

| f1(s)|2ds ≤C1

∑
q′∈Λ

∫
Uδ(q′)

|s−q′|2α

|s−q′|4
ds+C2 <∞.

In the case v1(q′) , 0 for some q′ ∈ Λ, an application of estimates (3.3), (3.4) imply∫
T3

| f1(s)|2ds ≥C1

∫
Uδ(q′)

ds
|s−q′|4

=∞.

Therefore f1 ∈ L2(T3) if and only if v1(q′) = 0 for all q′ ∈ Λ.
”If Part”. Let ∆(0 ;0)= 0 and v1(q′)= 0 for all q′ ∈Λ. Then the vector f = ( f0, f1),where

f0 and f1 are defined by (2.2), obeys the equation h(0) f = 0 and as we show in ”Only If
Part” that f1 ∈ L2(T3).

(ii) ”Only If Part”. Let the operator h(0) have a zero energy resonance. Then by Defi-
nition 2.2 the equation

ψ(q) =
v1(q)

2(l1+ l2)

∫
T3

v1(s)ψ(s)ds
ε(s)

, ψ ∈C(T3) (3.7)
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has a simple solution ψ ∈ C(T3) and ψ(q′) , 0 for some q′ ∈ Λ. It is easy to see that this
solution is equal to v1(·) (up to a constant factor) and hence ∆(0 ;0) = 0.

”If Part”. Let the equality ∆(0 ;0) = 0 hold and v1(q′) , 0 for some q′ ∈ Λ. Then the
function v1 ∈ C(T3) is a solution of the equation (3.7), that is, the operator h(0) has a zero
energy resonance. �

Set
Λ0 := {q′ ∈ Λ : v1(q′) , 0}.

Lemma 3.3. If the operator h(0) has a zero energy resonance, then the vector f = ( f0, f1),
where f0 and f1 are given by (2.2), obeys the equation h(0) f = 0 and f1 ∈ L1(T3) \L2(T3).

Proof. Since the fact that the vector f defined as in Lemma 3.3 satisfies h(0) f = 0 is obvi-
ous, we show that f1 ∈ L1(T3) \L2(T3).

Let the operator h(0) have a zero energy resonance. Then by the assertion (ii) of Lemma
3.2 we have v1(q′) , 0 for some q′ ∈ Λ. Using the estimates (3.2)–(3.5) we have∫
T3

| f1(s)|2ds ≥
| f0|2

2(l1+ l2)2

∫
Uδ(q′)

v2
1(s)ds

ε2(s)
≥C2

∫
Uδ(q′)

ds
|s−q′|4

=∞;

∫
T3

| f1(s)|ds =
| f0|

√
2(l1+ l2)

( ∑
q′∈Λ0

∫
Uδ(q′)

|v1(s)|ds
ε(s)

+
∑

q′∈Λ\Λ0

∫
Uδ(q′)

|v1(s)|ds
ε(s)

+

∫
Tδ

|v1(s)|ds
ε(s)

)
≤C1

∑
q′∈Λ0

∫
Uδ(q′)

ds
|s−q′|2

+C2

∑
q′∈Λ\Λ0

∫
Uδ(q′)

ds
|s−q′|2−α

+C3 <∞.

Therefore, f1 ∈ L1(T3) \L2(T3). �

Lemma 3.4. If the operator h(0) has either a zero energy resonance or a zero eigenvalue,
then for any K ∈ Λ and p ∈ T3 the operator h(K − p)+ l1ε(p)I is non-negative.

Similar lemma were proved in [5] and we refer to this paper for the proof.
Now we formulate a lemma (zero energy expansion for the Fredholm determinant, lead-

ing to behaviors of the zero energy resonance), which is important in the proof of Theorem
2.4, that is, the asymptotics (2.3).

Lemma 3.5. Let the operator h(0) have a zero energy resonance and K, p′ ∈ Λ. Then the
following decomposition

∆(K − p ;z− l1ε(p)) =
2π2

n2(l1+ l2)3/2

( ∑
q′∈Λ0

v2
1(q′)

)√ l21+2l1l2
l1+ l2

|p− p′|2−
2z
n2

+O(|p− p′|2)+O(|z|)

holds for |p− p′| → 0 and z→−0.
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Proof. Let us sketch the main idea of the proof. Assume the operator h(0) have a zero
energy resonance and K, p′ ∈ Λ. Using the additivity property of the integral we represent
the function ∆(K − p ;z− l1ε(p)) as

∆(K − p ;z− l1ε(p)) = w1(K; p)− z−
1
2

∑
q′∈Λ0

∫
Uδ(q′)

v2
1(s)ds

w2(K; p, s)− z

−
1
2

∑
q′∈Λ\Λ0

∫
Uδ(q′)

v2
1(s)ds

w2(K; p, s)− z
−

1
2

∫
Tδ

v2
1(s)ds

w2(K; p, s)− z
, (3.8)

where δ > 0 is a sufficiently small number.
Since the function w2(K; ·, ·) has non-degenerate minimum at the points (p′,q′), p′,q′ ∈

Λ, analysis similar to [4] show that

∫
Uδ(q′)

v2
1(s)ds

w2(K; p, s)− z
=

∫
Uδ(q′)

v2
1(s)ds

w2(K; p′, s)
−

4π2v2
1(q′)

n2(l1+ l2)3/2

√
l21+2l1l2

l1+ l2
|p− p′|2−

2z
n2

+O(|p− p′|2)+O(|z|), q′ ∈ Λ0;∫
Uδ(q′)

v2
1(s)ds

w2(K; p, s)− z
=

∫
Uδ(q′)

v2
1(s)ds

w2(K; p′, s)
+O(|p− p′|2)+O(|z|), q′ ∈ Λ \Λ0;

∫
Tδ

v2
1(s)ds

w2(K; p, s)− z
=

∫
Tδ

v2
1(s)ds

w2(K; p′, s)
+O(|p− p′|2)+O(|z|)

as |p− p′| → 0 and z→ −0. Here we remind that v1(q′) = 0 for all q′ ∈ Λ \Λ0 and hence
by the estimate (3.2) we have v1(q) = O(|q− q′|α) as |q− q′| → 0 for some α ≥ 1. Now
substituting the last three expressions and the the expansion

w1(K; p) = 1+
(l1+ l2)n2

2
|p− p′|2+O(|p− p′|4)

as |p− p′| → 0, to the equality (3.8) we obtain

∆(K − p ;z− l1ε(p)) = ∆(0 ;0)+
2π2

n2(l1+ l2)3/2

( ∑
q′∈Λ0

v2
1(q′)

)√ l21+2l1l2
l1+ l2

|p− p′|2−
2z
n2

+O(|p− p′|2)+O(|z|)

as |p− p′| → 0 and z→ −0. Since the operator h(0) has a zero energy resonance by the
assertion (ii) of Lemma 3.2 we have the equality ∆(0 ;0) = 0, which completes the proof of
the Lemma 3.5. �

Corollary 3.6. Let the operator h(0,0) have a zero energy resonance and K ∈Λ. Then there
exist the numbers C1,C2,C3 > 0 and δ > 0 such that
(i) C1|p− p′| ≤ ∆(K − p ;−l1ε(p)) ≤C2|p− p′|, p ∈ Uδ(p′), p′ ∈ Λ;
(ii) ∆(K − p ;−l1ε(p)) ≥C3, p ∈ Tδ.
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Proof. Lemma 3.5 yields the assertion (i) for some positive numbers C1,C2. The positivity
and continuity of the function ∆(K − p ;−l1ε(p)) on the compact set Tδ imply the assertion
(ii). �

Lemma 3.7. Let the operator h(0) have a zero eigenvalue and K ∈ Λ. Then there exist the
numbers C1,C2,C3 > 0 and δ > 0 such that
(i) C1|p− p′|2 ≤ ∆(K − p ;−l1ε(p)) ≤C2|p− p′|2, p ∈ Uδ(p′), p′ ∈ Λ;
(ii) ∆(K − p ;−l1ε(p)) ≥C3, p ∈ Tδ.

Proof. Let the operator h(0) have a zero eigenvalue. Then by the assertion (i) of Lemma
3.2 we have v1(p′) = 0 for all p′ ∈ Λ.

Let K ∈ Λ. Then ∆(K − p ;−l1ε(p)) = ∆(p ;−l1ε(p)) holds for any p ∈ T3. Proceeding
analogously to the proof of Lemma 3.4 of [5] one can show that the function ∆(· ;−l1ε(·))
has minimum at the points p = p′ ∈Λ. Here we prove that this function has non-degenerate
minimum at the points p = p′ ∈ Λ. Since the function w2(0; ·, ·) is positive on (T3 \Λ)×T3

the integrals

λ(1)
i j (p) :=

∫
T3

(
∂2w2(0; p, s)
∂p(i)∂p( j)

)
v2

1(s)ds

(w2(0; p, s))2 , i, j = 1,2,3

and

λ(2)
i j (p) :=

∫
T3

(
∂w2(0; p, s)

∂p(i)

∂w2(0; p, s)
∂p( j)

)
v2

1(s)ds

(w2(0; p, s))3 , i, j = 1,2,3

are finite for any p ∈ T3 \Λ. The condition v1(p′) = 0 for all p′ ∈ Λ implies finiteness of
these integrals at the points of Λ. Thus the functions λ(l)

i j (·), l = 1,2 are continuous on T3.

We define the function I(·) on T3 by

I(p) :=
∫
T3

v2
1(s)ds

w2(0; p, s)
.

The function I(·) is a twice continuously differentiable function T3 and

∂2I(p)
∂p(i)∂p( j) = −λ

(1)
i j (p)+2λ(2)

i j (p), i, j = 1,2,3.

Simple calculations shows that

∂w2(0; p,q)
∂p(i) = n

[
l1 sin(nq(i))+ l2 sin(n(p(i)+q(i)))

]
, i = 1,2,3;

∂2w2(0; p,q)
∂p(i)∂p(i) = n2

[
l1 cos(nq(i))+ l2 cos(n(p(i)+q(i)))

]
, i = 1,2,3;

∂2w2(0; p,q)
∂p(i)∂p( j) = 0, i , j, i, j = 1,2,3
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and hence for p′ ∈ Λ we obtain

∂2I(p′)
∂p(i)∂p(i) = −

n2

4

∫
T3

 3∑
l=1, l,i

(1− cos(ns(l)))

 (1+ cos(ns(i)))v2
1(s)

ε3(s)
ds, i = 1,2,3;

∂2I(p′)
∂p(i)∂p( j) =

n2

4

∫
T3

sin(ns(i)) sin(ns( j))v2
1(s)

ε3(s)
ds, i , j, i, j = 1,2,3.

The last equalities and the evenness of v2
2(·) on each variables imply

∂2I(p′)
∂p(i)∂p(i) < 0,

∂2I(p′)
∂p(i)∂p( j) = 0, i , j, i, j = 1,2,3

for p′ ∈ Λ. Since

∂2w1(0; p′)
∂p(i)∂p(i) = (l1+ l2)n2,

∂2w1(0; p′)
∂p(i)∂p( j) = 0, i , j, i, j = 1,2,3

for all p′ ∈ Λ by definition of ∆(· ; ·) we have

∂2∆(p′ ;0)
∂p(i)∂p(i) > (l1+ l2)n2,

∂2∆(p′ ;0)
∂p(i)∂p( j) = 0, i , j, i, j = 1,2,3

for all p′ ∈Λ. Therefore the function ∆(· ;−l1ε(·)) has non-degenerate minimum at the points
of p = p′ ∈ Λ. This fact completes the proof of lemma. �

Lemma 3.8. Let K ∈Λ and zero be the regular type point for h(0) with h(0) ≥ 0. Then there
exists a positive number C1 such that the inequality

∆(K − p ;z− l1ε(p)) ≥C1

holds for any p ∈ T3 and z < 0.

Proof. Let zero be the regular type point of h(0), that is, ∆(0 ;0) , 0. Assume ∆(0 ;0) < 0.
Then lim

z→−∞
∆(0 ;z) = −∞ and the continuity of of the function ∆(0 ; )̇ on (−∞;0] imply that

there exists z0 < 0 such that ∆(0 ;z0) = 0. In this case by Lemma 3.1 the number z0 is an
eigenvalue of the operator h(0). On the other hand by the assumption of the lemma we
have h(0) ≥ 0. Therefore the operator h(0) has no negative eigenvalues. This contrary gives
∆(0 ;0) > 0.

Since for any K ∈ Λ the function ∆(K− p ;−l1ε(p)) has minimum at the points p = p′ ∈
Λ, for all p ∈ T3 and z < 0 we obtain

∆(K − p ;z− l1ε(p)) > ∆(K − p ;−l1ε(p)) ≥ ∆(0 ;0) > 0.

Setting C1 := ∆(0 ;0) we complete the proof of lemma. �
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4 The Birman-Schwinger principle.

For a bounded self-adjoint operator A acting in the Hilbert space R, we define the number
n(γ,A) by the rule

n(γ,A) := sup{dimF : (Au,u) > γ, u ∈ F ⊂ R, ||u|| = 1}.

The number n(γ,A) is equal to the infinity if γ < maxσess(A); if n(γ,A) is finite, then it
is equal to the number of the eigenvalues of A bigger than γ.

By the definition of N(K,z), we have

N(K,z) = n(−z,−H(K)), −z > −τess(K).

Since for any K ∈ T3 the function ∆(K − p ;z− l1ε(p)) is a positive on (p,z) ∈ T3 ×

(−∞;τess(K)), the positive square root of ∆(K − p ;z− l1ε(p)) exists for any K, p ∈ T3 and
z < τess(K).

In our analysis of the discrete spectrum of H(K), K ∈ T3 the crucial role is played by
the self-adjoint compact 2×2 block operator matrix T̂(K,z), z < τess(K) acting onH0⊕H1
as

T̂(K,z) :=
(

T̂00(K,z) T̂01(K,z)
T̂ ∗01(K,z) T̂11(K,z)

)
with the entries

T̂00(K,z)g0 = (1+ z−w0(K))g0, T̂01(K,z)g1 = −

∫
T3

v0(s)g1(s)ds
√
∆(K − s ;z− l1ε(s))

;

(T̂11(K,z)g1)(p) =
v1(p)

2
√
∆(K − p ;z− l1ε(p))

∫
T3

v1(s)g1(s)ds
√
∆(K − s ;z− l1ε(s))(w2(K; p, s)− z)

.

The following lemma is a modification of the well-known Birman-Schwinger principle
for the operator H(K) (see [1, 3, 4, 25]).

Lemma 4.1. Let K ∈ T3. The operator T̂(K,z) is compact and continuous in z < τess(K) and

N(K,z) = n(1, T̂(K,z)).

For the proof of this lemma, see Lemma 5.1 of [4].

5 Finiteness of the number of eigenvalues of H(K), K ∈ Λ

We starts the proof of the finiteness of the number of negative eigenvalues (Theorem 2.3)
with the following two lemmas.

Lemma 5.1. Let K, p′,q′ ∈ Λ. Then there exist the numbers C1,C2 > 0 and δ > 0 such that
(i) C1(|p− p′|2+ |q−q′|2) ≤ w2(K; p,q) ≤C2(|p− p′|2+ |q−q′|2), (p,q) ∈ Uδ(p′)×Uδ(q′);
(ii) w2(K; p,q) ≥C1, (p,q) <

⋃
p′∈Λ

Uδ(p′)×
⋃

q′∈Λ
Uδ(q′).
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Proof. Since for any K ∈Λ the function w2(K; ·, ·) has non-degenerate zero minimum at the
points (p′,q′) ∈ Λ×Λ, we obtain the following expansion

w2(K; p,q) =
n2

2

[
(l1+ l2)|p− p′|2+2l2(p− p′,q−q′)+ (l1+ l2)|q−q′|2

]
+O(|p− p′|4)+O(|q−q′|4)

as |p− p′|, |q−q′| → 0 for p′,q′ ∈ Λ. Then there exist positive numbers C1,C2 and δ so that
(i) and (ii) hold true. �

Lemma 5.2. Let K ∈ Λ and one of the following assumptions hold:
(i) the operator h(0) has a zero eigenvalue;
(ii) a zero is the regular type point for h(0) and h(0) ≥ 0.

Then for any z ≤ 0 the operator T̂(K,z) is compact and continuous from the left up to
z = 0.

Proof. Let K ∈Λ. Denote by Q(K; p,q;z) the kernel of the integral operator T̂11(K,z), z < 0,
that is,

Q(K; p,q;z) :=
v1(p)v1(q)

2
√
∆(K − p ;z− l1ε(p))(w2(K; p,q)− z)

√
∆(K −q ;z− l1ε(q))

.

If the operator h(0) has a zero eigenvalue, then by the assertion (i) of Lemma 3.2 we
have v1(q′) = 0 for all q′ ∈ Λ. By virtue of inequality (3.2), Corollary 3.6 and Lemma 5.1
the kernel Q(K; p,q;z) is estimated by

C1

∑
p′,q′∈Λ

(
χδ(p− p′)
|p− p′|

+1
)(
|q−q′|χδ(p− p′)χδ(q−q′)
|p− p′|2+ |q−q′|2

+1
)χδ(q−q′)

|q−q′|
1
2

+1

 , (5.1)

where χδ(·) is the characteristic function of Uδ(0).
If a zero is the regular type point for h(0) and h(0) ≥ 0, then by virtue of Lemmas 3.8

and 5.1 the kernel Q(K; p,q;z) is estimated by

C1

∑
p′,q′∈Λ

(
χδ(p− p′)χδ(q−q′)
|p− p′|2+ |q−q′|2

+1
)
. (5.2)

The functions (5.1) and (5.2) are square-integrable on (T3)2 and hence for any z ≤ 0 the
operator T̂11(K,z) is Hilbert-Schmidt.

The kernel function of T̂11(K,z), z < 0 is continuous in p,q ∈ T3. Therefore the conti-
nuity of the operator T̂11(K,z) from the left up to z = 0 follows from Lebesgue’s dominated
convergence theorem.

Since for all z ≤ 0 the operators T̂00(K,z), T̂01(K,z) and T̂ ∗01(K,z) are of rank 1 and
continuous from the left up to z = 0 one concludes that T̂(K,z) is compact and continuous
from the left up to z = 0. �

We are now ready for the
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Proof of Theorem 2.3. Let the conditions of Theorem 2.3 be fulfilled. Using the Weyl in-
equality

n(λ1+λ2,A1+A2) ≤ n(λ1,A1)+n(λ2,A2)

for the sum of compact operators A1 and A2 and for any positive numbers λ1 and λ2 we
have

n(1, T̂(K,z)) ≤ n(1/2, T̂(K,0))+n(1/2, T̂(K,z)− T̂(K,0)) (5.3)

for all z < 0.
By virtue of Lemma 5.2 the operator T̂(K,z) is continuous from the left up to z = 0,

which implies that the second summand on the r.h.s. of (5.3) tends to zero as z→ −0. By
Lemma 4.1 we have N(K,z) = n(1, T̂(K,z)) as z < 0 and hence

lim
z→−0

N(K,z) = N(K,0) ≤ n(1/2, T̂(K,0)).

Thus N(K,0)≤ n(1/2, T̂(K,0)).By Lemma 5.2 the number n(1/2, T̂(K,0)) is finite and hence
N(K,0) <∞. This completes the proof of Theorem 2.3. �

6 Asymptotics for the number of negative eigenvalues of H(K),
K ∈ Λ

In this section first we derive the asymptotic relation (2.3) for the number of negative eigen-
values of H(K), K ∈ Λ.

Let S2 be the unit sphere in R3 and σ = L2(S2). As we shall see, the discrete spectrum
asymptotics of the operator T̂(K,z) K ∈ Λ as z→−0 is determined by the integral operator
S r, r = 1/2| log |z|| in L2((0,r),σ) with the kernel

S (y, t) :=
1

4π2

(l1+ l2)2√
l21+2l1l2

1
(l1+ l2)coshy+ l2t

,

where y = x− x′, x, x′ ∈ (0,r) and t = 〈ξ,η〉 is the inner product of the arguments ξ,η ∈ S2.

The eigenvalues asymptotics for the operator S r have been studied in detail by Sobolev
[25], by employing an argument used in the calculation of the canonical distribution of
Toeplitz operators.

Let us recall some results of [25] which are important in our work.
The coefficient in the asymptotics (2.3) of N(K,z) will be expressed by means of the

self-adjoint integral operator Ŝ (θ), θ ∈ R, in the space σ, whose kernel is of the form

Ŝ (θ, t) :=
1

4π2

(l1+ l2)2

l21+2l1l2

sinh[θarccos l2
l1+l2

t]

sinh(πθ)
,

and depends on t = 〈ξ,η〉. For γ > 0, define

U(γ) :=
1

4π

+∞∫
−∞

n(γ, Ŝ (θ))dθ.
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This function was studied in detail in [25]; where it was used in showing existence proof of
the Efimov effect. In particular, as it was shown in [25], the function U(·) is continuous in
γ > 0, and the limit

lim
r→0

1
2

r−1n(γ,S r) = U(γ) (6.1)

exists and the number U(1) is positive.
For completeness, we reproduce the following lemma, which has been proven in [25].

Lemma 6.1. Let A(z) = A0(z)+ A1(z), where A0(z) (A1(z)) is compact and continuous for
z < 0 (for z ≤ 0). Assume that the limit

lim
z→−0

f (z)n(γ,A0(z)) = l(γ)

exists and l(·) is continuous in (0;+∞) for some function f (·), where f (z)→ 0 as z→ −0.
Then the same limit exists for A(z) and

lim
z→−0

f (z)n(γ,A(z)) = l(γ).

Remark 6.2. Since the function U(·) is continuous with respect to γ, it follows from Lemma
6.1 that any perturbation of A0(z) treated in Lemma 6.1 (which is compact and continuous
up to z = 0) does not contribute to the asymptotic relation (2.3). In the rest part of this
subsection we use this fact without further comments.

Now we are going to reduce the study of the asymptotics for the operator T̂(K,z) with
K ∈ Λ to that of the asymptotics S r.

Let T(δ; |z|) be the operator inH0⊕H1 defined by

T(δ; |z|) :=
(

0 0
0 T11(δ; |z|)

)
,

where T11(δ; |z|) is the integral operator inH1 with the kernel

D
∑

p′,q′∈Λ0

v1(p′)v1(q′)χδ(p− p′)χδ(q−q′)(m|p− p′|2+2|z|/n2)−
1
4 (m|q− p′|2+2|z|/n2)−

1
4

(l1+ l2)|p− p′|2+2l2(p− p′,q−q′)+ (l1+ l2)|q−q′|2+2|z|/n2 .

Here

D :=
(l1+ l2)3/2

π2

( ∑
q′∈Λ0

v2
1(q′)

)−1
and m :=

l21+2l1l2
l1+ l2

.

The operator T(δ; |z|) is called singular part of T̂(K,z).
The main technical point to apply Lemma 6.1 is the following lemma.

Lemma 6.3. Let K ∈ Λ. Then for any z ≤ 0 and small δ > 0 the difference T̂(K,z)−T(δ; |z|)
is compact and is continuous with respect to z ≤ 0.
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Proof. By Lemma 5.1 and Corollary 3.6, one can estimate the kernel of the operator T̂11(K,z)−
T11(δ; |z|), z ≤ 0, by the square-integrable function

C1

∑
p′,q′∈Λ0

[ 1
|p− p′|1/2

+
1

|q−q′|1/2
+

|p− p′|+ |q−q′|
|p− p′|1/2(|p− p′|2+ |q−q′|2)|q−q′|1/2

+
|z|1/2

(|p− p′|2+ |z|)1/4(|p− p′|2+ |q−q′|2)(|q−q′|2+ |z|)1/4 +1
]
.

Hence, the operator T̂11(K,z)−T11(δ; |z|) belongs to the Hilbert-Schmidt class for all z ≤ 0.
In combination with the continuity of the kernel of the operator with respect to z < 0, this
implies the continuity of T̂11(K,z)−T11(δ; |z|) with respect to z ≤ 0.

It is easy to see that T̂00(K,z), T̂01(K,z) and T̂ ∗01(K,z) are rank 1 operators and they
are continuous from the left up to z = 0. Consequently T̂(K,z)−T(δ; |z|) is compact and
continuous in z ≤ 0. �

From definition of T(δ; |z|) it follows that σ(T(δ; |z|)) = {0} ∪σ(T11(δ; |z|)) and hence
n(γ,T(δ; |z|)) = n(γ,T11(δ; |z|)) for all γ > 0.

The following theorem is fundamental for the proof of the asymptotic relation (2.3).

Theorem 6.4. We have the relation

lim
|z|→0

n(γ,T11(δ; |z|))
| log |z||

= U(γ), γ > 0. (6.2)

Proof. The subspace of functions ψ, supported by the set
⋃

q′∈Λ0

Uδ(q′) is invariant with

respect to the operator T11(δ; |z|). Let T 0
11(δ; |z|) be the restriction of the integral operator

T11(δ; |z|) to the subspace L2(
⋃

q′∈Λ0

Uδ(q′)), that is, the integral operator in L2(
⋃

q′∈Λ0

Uδ(q′))

with the kernel T 0
11(δ; |z|; ·, ·) defined on

⋃
p′∈Λ0

Uδ(p′)×
⋃

q′∈Λ0

Uδ(q′) as

T 0
11(δ; |z|; p,q) =

D(m|p− p′|2+2|z|/(n2))−
1
4 (m|q−q′|2+2|z|/(n2))−

1
4

(l1+ l2)|p− p′|2+2l2(p− p′,q−q′)+ (l1+ l2)|q−q′|2+2|z|/(n2)
,

(p,q) ∈ Uδ(p′)×Uδ(q′) for p′,q′ ∈ Λ0.

In the rest part of the proof we denote by n0 the number of points of Λ0 and for conve-
nience we numerate the points of Λ0 as p1, . . . , pn0 and set 1,n0 = 1, . . . ,n0.

Since L2(
⋃

q′∈Λ0

Uδ(q′)) �
⊕

q′∈Λ0

L2(Uδ(q′)), we can express the integral operator T 0
11(δ; |z|)

as the n0×n0 block operator matrix T0(δ; |z|) acting on
n0⊕
i=1

L2(Uδ(pi)) as

T0(δ; |z|) :=


T (1,1)

0 (δ; |z|) . . . T (1,n0)
0 (δ; |z|)

...
. . .

...

T (n0,1)
0 (δ; |z|) . . . T (n0,n0)

0 (δ; |z|)

 ,
where for i, j = 1,n0 the operator T (i, j)

0 (δ; |z|) : L2(Uδ(p j))→ L2(Uδ(pi)) is the integral oper-
ator with the kernel T0(δ; |z|; p,q), (p,q) ∈ Uδ(pi)×Uδ(p j).
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Set
L(n0)

2 (Ur(0)) := {φ = (φ1, · · · ,φn0) : φi ∈ L2(Ur(0)), i = 1,n0}.

It is easy to show that T0(δ; |z|) is unitarily equivalent to the n0×n0 block operator matrix
T1(r), r = |z|−

1
2 , acting on L(n0)

2 (Ur(0)) as

T1(r) :=


v1(p1)v1(p1)T1(r) . . . v1(p1)v1(pn0)T1(r)

...
. . .

...

v1(pn0)v1(p1)T1(r) . . . v1(pn0)v1(pn0)T1(r)

 ,
where T1(r) is the integral operator on L2(Ur(0)) with the kernel

D(m|p|2+2/(n2))−
1
4 (m|q|2+2/(n2))−

1
4

(l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2+2/(n2)
.

The equivalence is realized by the unitary dilation (n0×n0 diagonal matrix)

Br := diag{B(1)
r , . . . ,B(n0)

r } :
n0⊕
i=1

L2(Uδ(pi))→ L(n0)
2 (Ur(0)),

Here for i = 1,n0 the operator B(i)
r : L2(Uδ(pi))→ L2(Ur(0)) acts as

(B(i)
r f )(p) = (r/δ)−3/2 f (δp/r+ pi).

Let Ar and E be the n0×1 and 1×n0 matrices of the form

Ar :=


v1(p1)T1(r)

...

v1(pn0)T1(r)

 , E := (v1(p1)I . . .v1(pn0)I),

respectively, where I is the identity operator on L2(Ur(0)).
It is well known that if B1,B2 are bounded operators and γ , 0 is an eigenvalue of B1B2,

then γ is an eigenvalue for B2B1 as well of the same algebraic and geometric multiplicities
(see e.g. [11]). Therefore, n(γ,ArE) = n(γ,EAr), γ > 0. Direct calculation shows that
T1(r) = ArE and

EAr = T 0
1 (r) :=

( n0∑
i=1

v2
1(pi)

)
T1(r).

So, for γ > 0 we have n(γ,T1(r)) = n(γ,T 0
1 (r)).

Furthermore, replacing

(m|p|2+2/(n2))
1
4 , (m|q|2+2/(n2))

1
4 and (l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2+2/(n2)

by the expressions

(m|p|2)
1
4 (1−χ1(p))−1, (m|q|2)

1
4 (1−χ1(q))−1 and (l1+ l2)|p|2+2l2(p,q)+ (l1+ l2)|q|2,

respectively, we obtain the integral operator T2(r). The error T 0
1 (r)− T2(r) is a Hilbert-

Schmidt operator and continuous up to z = 0.
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Using the dilation

M : L2(Ur(0) \U1(0))→ L2((0,r),σ), (M f )(x,w) = e3x/2 f (exw),

where r= 1/2| log |z||, x ∈ (0,r),w ∈ S2, one sees that the operator T2(r) is unitarily equivalent
to the integral operator S r.

Since the difference of the operators S r and T11(δ; |z|) is compact (up to unitary equiva-
lence) and hence, since r = 1/2| log |z||, we obtain the equality

lim
|z|→0

n(γ,T11(δ; |z|))
| log |z||

= lim
r→0

1
2

r−1n(γ,S r), γ > 0.

Now Lemma 6.1 and the equality (6.1) complete the proof of Theorem 6.4. �

We are now ready for the

Proof of Theorem 2.4. Let the operator h(0) have a zero energy resonance and K ∈Λ.Using
Lemmas 6.1, 6.3 and Theorem 6.4 we have that

lim
|z|→0

n(1,T(K,z))
| log |z||

= U(1).

Taking into account the last equality and Lemma 4.1, and settingU0 = U(1), we complete
the proof of Theorem 2.4. �
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