2021. Том 62, № 3

Mapm

C. 394 – 403

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОМПЛЕКСОВ НИКЕЛЯ(II) С ПРОИЗВОДНЫМИ БЕНЗОИЛУКСУСНЫХ АЛЬДЕГИДОВ

М.А. Турсунов, Б.Б. Умаров, К.Г. Авезов

Бухарский государственный университет, Бухара, Республика Узбекистан E-mail: tursunov@mail.ru

Статья поступила	С доработки	Принята к публикации
28.08.2020	17.09.2020	08.10.2020

Синтезированы и исследованы комплексные соединения Ni(II) состава [Ni(Lⁿ)A] (n = 1—4, $A = NH_3$, Py) на основе продуктов конденсации бензоилуксусного альдегида с гидразидами ароматических кислот (H_2L^1 — H_2L^4). Кристаллографические данные для комплекса NiL²·Py: триклинная сингония, пространственная группа $P\overline{1}$, a = 9.3151(9) Å, b = 10.5675(11) Å, c = 11.9266(7) Å, $\alpha = 112.030(7)^\circ$, $\beta = 92.227(6)^\circ$, $\gamma = 115.341(10)^\circ$, V = 955.33(17) Å³, Z = 2, $R_1 = 0.045$ и $wR_2 = 0.106$; для комплекса NiL⁴·NH₃: моноклинная сингония, пространственная группа $P2_1/c$, a = 10.3837(9) Å, b = 8.2507(6) Å, c = 19.630(2) Å, $\beta = 98.658(11)^\circ$, V = 1662.5(3) Å³, Z = 3, $R_1 = 0.0485$ и $wR_2 = 0.1305$.

DOI: 10.26902/JSC id69881

Ключевые слова: бензоилуксусный альдегид, гидразид бензойной кислоты, пятии шестичленная псевдоароматическая система металлоциклов, рентгеноструктурный анализ.

введение

Последние годы исследования в области координационной химии отличаются устойчивой тенденцией к поиску новых молекулярных материалов. Производные ароилгидразонов бензоилуксусных альдегидов представляют большой интерес как источник потенциально прототропных кольчато-цепных равновесных форм [1—6]. Это обусловило выбор ароилгидразонов в качестве нуклеофилов в рассматриваемой работе. Нами синтезированы комплексные соединения [Ni(Lⁿ)A] (n = 1—4, $A = NH_3$, Py) взаимодействием ацетата никеля(II) на основе H_2L^1 — H_2L^4 (ароилгидразонов бензоилуксусного альдегида) [7—11]. Полученные соединения красного цвета диамагнитны, растворимы в хлороформе, бензоле и других органических растворителях, но не в воде. Данные ИК и ¹Н ЯМР спектроскопии указывают на плоскоквадратное строение комплексов, что подтверждено методом РСА для двух комплексных соединений: NiL²·Py и NiL⁴·NH₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали лиганды H_2L^1 — H_2L^4 , синтезированные согласно [10—15], ацетат никеля(II), аммиак (все ХЧ), пиридин (ЧДА), а также растворители ЕtOH, диэтиловый эфир (ХЧ, перегнанные).

Синтез комплекса NiL¹·NH₃. К раствору бензоилгидразона бензоилуксусного альдегида (H₂L¹, 1.33 г, 0.005 моль) в 30 мл этанола добавляли постепенно горячий раствор ацетата никеля(II) (1.25 г, 0.005 моль) в 15 мл концентрированного аммиака и перемешивали в течение

[©] Турсунов М.А., Умаров Б.Б., Авезов К.Г., 2021

Соединение	Брутто-формула	Выход, %	<i>Т</i> _{пл} , °С	Найдено/рассчитано, %				
				Ni	С	Н	Ν	
NiL ¹ ·NH ₃	NiC ₁₆ H ₁₅ N ₃ O ₂	86	257—259	17.18/17.26	56.49/56.52	4.23/4.45	12.75/12.36	
$NiL^1 \cdot Py$	NiC ₂₁ H ₁₇ N ₃ O ₂	82	311—313	14.55/14.60	62.57/62.73	4.22/4.26	10.63/10.45	
$NiL^2 \cdot NH_3$	$NiC_{17}H_{17}N_3O_2$	77	265—267	16.50/16.58	56.55/57.67	4.76/4.84	11.95/11.87	
$NiL^2 \cdot Py$	$NiC_{22}H_{19}N_3O_2$	69	319—321	14.07/14.11	63.46/63.50	4.53/4.60	10.27/10.10	
$NiL^3 \cdot NH_3$	NiC ₁₇ H ₁₇ N ₃ O ₃	72	277—279	15.79/15.86	55.11/55.18	4.56/4.63	11.44/11.36	
$NiL^4 \cdot NH_3$	NiC ₁₇ H ₁₇ N ₃ O ₄	82	272—274	15.11/15.20	52.76/52.89	4.32/4.44	11.02/10.89	

Выходы, температура плавления и результаты элементного анализа комплексных соединений Ni(II)

30 мин при 55—60 °С. Через 15 мин выпадали поликристаллы красного цвета. Осадок отфильтровывали, промывали водой, этиловым спиртом и высушивали в вакуум-эксикаторе над P_2O_5 . Выход NiL¹·NH₃: 1.23 (86 %).

Аналогично синтезированы другие аммиачные комплексы Ni(II) с соответствующими лигандами H_2L^2 — H_2L^4 .

При растворении комплекса NiL¹·NH₃ в минимальном количестве пиридина с последующим высаливанием диэтиловым эфиром получен комплекс NiL¹·Py [10, 11, 15, 16]. Выпавший осадок ярко-красного цвета отфильтровывали, промывали спиртом, эфиром и высушивали в вакуум-эксикаторе над P_2O_5 . Выход комплекса NiL¹·Py: 0.66 г (82 %).

По той же методике синтезирован и комплекс NiL²·Py.

Анализ комплексных соединений на содержание металлов проводили согласно [17, 18] атомно-абсорбционным методом на спектрофотометре PerkinElmier 3030 В (США), азот определяли по методу Дюма, углерод и водород — сжиганием в токе кислорода и на элементном анализаторе Karlo-Erba-1106 [18], расчет данных анализа осуществляли на ЭВМ НЕС-960.

Результаты элементного анализа и выходы полученных комплексных соединений Ni(II) приведены в табл. 1. ИК спектры записывали на спектрометре Specord 75 IR в интервале 400—4000 см⁻¹, используя прессованные таблетки КВг [19, 20]. Спектры ¹Н ЯМР на ядрах ¹Н 5—10 процентных растворов комплексных соединений в DMSO- d^6 получены на спектрометре Bruker DPX-300 с рабочей частотой 300 МГц [20]. Калибровка сигналов производилась относительно стандарта тетраметилсилана $\delta = 0.00$ м.д. Перекристаллизацией из раствора NiL²·NH₃ в небольшом объеме пиридина и NiL⁴·NH₃ из смеси этанола—хлороформа (1:1) получены соответствующие моноклинные кристаллы NiC₂₂H₁₉N₃O₂ и NiC₁₇H₁₇N₃O₄, пригодные для PCA [8—11].

Рентгеноструктурное исследование проведено на автоматическом дифрактометре Xcalibur, Oxford Diffraction (T = 293 K, $\lambda = 1.5418$ Å, Cu K_{α} излучение, графитовый монохроматор ω -сканирование, $2\theta_{max} = 50^{\circ}$) (табл. 2). Структуры комплексов расшифрованы прямым методом по программе SHELXS-97 [21—23] и уточнены МНК в анизотропном приближении по программе SHELXL-97 [23]. Атомы водорода локализованы из карт электронной плотности разностного синтеза Фурье и уточнены в изотропном приближении [21—23]. Полные таблицы межатомных расстояний и валентных углов, координаты атомов и параметры атомных смещений для NiL²·Py и NiL⁴·NH₃ депонированы в КБСД (ССDС 1508698 и 1508707 соответственно). Эти данные можно получить через http://www.ccdc.cam.ac.uk/conts/retrieving.html или в Кембриджском центре кристаллографических данных, 12 Union Road, Cambridge CB2 1EZ, Великобритания; факс: (+44) 1223-336-033; или по электронной почте: deposit@ccdc.cam.ac.uk

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для установления способности ацилгидразонов класса β-кетоальдегидов к определенным таутомерным превращениям и комплексообразующим свойствам нами изучены строения синте-

Параметр	NiL ² · Py	$NiL^4 \cdot NH_3$			
М	416.11	386.05			
Сингония	Триклинная	Моноклинная			
Пространственная группа	$P\overline{1}$	$P2_{1}/c$			
<i>a</i> , <i>b</i> , <i>c</i> , Å	9.3151(9), 10.5675(11), 11.9266(7)	10.3837(9), 8.2502(6), 19.630(2)			
α, β, γ, град.	112.030(7), 92.227(6), 115.341(10)	90, 98.658(11), 90			
<i>V</i> , Å ³	955.33(17)	1662.5(3)			
Ζ	2	4			
$ρ_{\rm bbiy}$, γ/cm ³	1.446	1.447			
μ, мм ⁻¹	1.649	1.93			
Размеры кристалла, мм	0.5×0.4×0.3	0.2×0.3×0.7			
в область, град.	4.1—75.9	4.6—76.3			
Область <i>h</i> , <i>k</i> , <i>l</i>	$-11 \le h \le 11, -13 \le k \le 13, -14 \le l \le 8$	$-9 \le h \le 12, -9 \le k \le 10, -24 \le l \le 24$			
Число рефлексов измерен- ных / незасимых (<i>R</i> _{int})	6440 / 3836 (0.036)	6471 / 3359 (0.040)			
Число отражений с $I > 2\sigma(I)$	2607	2037			
GOOF (F^2)	0.975	0.98			
$R_1, wR_2 (I > 2\sigma(I))$	0.045, 0.106	0.049, 0.131			
R_1 , wR_2 (все отражения)	0.0445, 0.1055	0.0485, 0.1305			
$\Delta \rho_{max}$ / $\Delta \rho_{min}$, e/Å ³	0.33 / 0.24	0.22 / 0.30			

Основные кристаллографические данные структур $NiL^2 \cdot Py \ u \ NiL^4 \cdot NH_3$

зированных продуктов конденсации бензоилуксусного альдегида с гидразидами ароматических кислот. В настоящей публикации исследуется состав, строение комплексных соединений никеля(II) на основе продуктов конденсации бензоилуксусного альдегида с гидразидами замещенных бензойных кислот.

Взаимодействием водно-аммиачного раствора ацетата никеля(II) со спиртовыми растворами эквимолярного количества соответствующих лигандов H₂L синтезированы комплексы состава NiL·NH₃ [10, 24, 25]. Методами элементного анализа, ИК и ¹Н ЯМР спектроскопии, РСА установлены состав и строение полученных комплексов с плоскоквадратной координацией атома никеля(II) (схема 1):

$$\begin{split} & \mathsf{R} = \mathsf{R}^1 = \mathsf{C}_6\mathsf{H}_5 \colon A = \mathsf{NH}_3, (\mathsf{NiL}^1 \cdot \mathsf{NH}_3), A = \mathsf{Py} \ (\mathsf{NiL}^1 \cdot \mathsf{Py}). \ \mathsf{R} = \mathsf{C}_6\mathsf{H}_5 \colon \mathsf{R}^1 = \textit{n-CH}_3\mathsf{C}_6\mathsf{H}_4, A = \mathsf{NH}_3, \\ & (\mathsf{NiL}^2 \cdot \mathsf{NH}_3), A = \mathsf{Py} \ (\mathsf{NiL}^2 \cdot \mathsf{Py}); \ \mathsf{R}^1 = \textit{m-OHC}_6\mathsf{H}_4, A = \mathsf{NH}_3, (\mathsf{NiL}_3 \cdot \mathsf{NH}_3). \\ & \mathsf{R} = \textit{n-CH}_3\mathsf{OHC}_6\mathsf{H}_4, \ \mathsf{R}^1 = \textit{o-OHC}_6\mathsf{H}_4, A = \mathsf{NH}_3, (\mathsf{NiL}_4 \cdot \mathsf{NH}_3). \end{split}$$

Схема 1. Состав и строение комплексов с плоскоквадратной координацией атома никеля(II)

Отметим, что аммиачные комплексы хорошо растворяются в органических растворителях, но не в воде. Комплекс NiL¹·Py [9, 10, 14, 26] получен при растворении аммиачного комплекса NiL¹·NH₃ в минимальном количестве пиридина с последующим высаливанием диэтиловым

Рис. 1. ИК спектр комплексного соединения $NiL^1 \cdot NH_3$

эфиром. В ИК спектрах данных комплексов наблюдаются полосы поглощения в области 3375— 3380 см⁻¹, 3320—3330 см⁻¹, 3240—3250 см⁻¹ и 3150 см⁻¹, которые следует отнести к симметричным и антисимметричным валентным колебаниям координированной молекулы аммиака (рис. 1, табл. 3) [24, 27].

В ИК спектрах комплексов отсутствует интенсивная полоса поглощения выше 1640 см⁻¹, отвечающая валентным колебаниям свободной карбонильной группы. В спектре комплексов NiL¹·Py и NiL²·Py, как и следовало ожидать, отсутствуют полосы поглощения в области 3375—3150 см⁻¹ и появляется полоса около 1600 см⁻¹, отнесенная к $v_{(C=N)}$ пиридина.

Частота валентных колебаний связи С—О понижается на 15—25 см⁻¹, в то же время значение частоты связи С = N повышается на 5—10 см⁻¹, что свидетельствует о координации тридентатных лигандов через атомы кислорода [28, 29].

В спектрах всех комплексных соединений отмечается ряд полос поглощения средней и сильной интенсивности в областях 1580—1585 см⁻¹, 1530—1540 см⁻¹, 1470—1480 см⁻¹, 1420—1430 см⁻¹, 1395—1400 см⁻¹, обусловленных валентными и валентно-деформационными колебаниями сопряженной системы связей пяти- и шестичленного псевдоароматических металлоциклов.

Выделенные комплексные соединения никеля(II) оказались диамагнитными в растворах с различными растворителями. Результаты изучения ¹Н ЯМР спектров позволяют сделать вывод

Таблица 3

Основные колебательные частоты (v, см⁻¹) в ИК спектрах комплексных соединений металлов на основе производных β-кетоальдегидов

Соединение	NH_3	Ру	С—Н	C=N	C—N	N=C-O	N—N	Ni—O
NiL ¹ ·NH ₃	3347	_	2950	1568	1276	1486	1075	470
$NiL^1 \cdot Py$		1600	2945	1615	1275	1487	1074	473
$NiL^2 \cdot NH_3$	3355	—	2940	1560	1268	1482	1073	472
$NiL^2 \cdot Py$	—	1635	2930	1600	1274	1484	1070	474
$NiL^3 \cdot NH_3$	3360	—	2935	1570	1278	1486	1075	475
$NiL^4 \cdot NH_3$	3350	—	2940	1564	1274	1482	1069	476

Таблица 4

Параметры спектров ¹ Н ЯМР комплексов никеля(II) с производными ароилуксусного альдегида в растворе ДМСО-d ₆ (б, м.д.)						
Соединение	Сигналы протонов R	H—C=N	—CH=	Сигналы протонов R ¹	Сигналы протонов А	

Соединение	Сигналы протонов R	H—C=N	-CH=	протонов \mathbb{R}^1	Сигналы протонов А
$NiL^1 \cdot NH_3$	7.26м; 7.62м; 7.83м	5.95	5.86	7.29м; 7.66м; 7.83м	Не наблюдаются из-за обмена координированного аммиака молекулами растворителя
$NiL^1 \cdot Py$	7.30м; 7.66м; 7.83м	6.04	5.98	7.34м; 7.66м; 7.89м	7.74м; 8.08м; 8.95м
$NiL^2 \cdot NH_3$	7.23м; 7.69м	6.35	5.34	7.23м; 7.93м	1.77
$NiL^2 \cdot Py$	7.34м; 7.66м	6.04	5.98	7.34м; 7.95м	7.74м; 8.08м; 8.95м
$NiL^3 \cdot NH_3$	7.26м; 7.62м; 7.83м	6.24	5.42	7.36м;7.72м; 7.96м	1.76
$NiL^4 \cdot NH_3$	7.30м; 7.64м (перекрываются, приведены центры сигналов)	6.34	5.28	7.25м; 7.48м	1.86

о плоскоквадратном строении полученных комплексных соединений. Параметры спектров ¹Н ЯМР растворов комплексов никеля(II) в дейтерированном ДМСО- d_6 приведены в табл. 4. В сопоставлении с известными по публикациям данными сигналы протонов в ¹Н ЯМР спектрах соединений NiL¹·Py, NiL³·NH₃ и NiL⁴·NH₃ (рис. 2, табл. 4) проявляются несколько иначе. Сигналы с центрами при δ 7.26 м.д., 7.62 м.д. и 7.83 м.д. соответствуют атомам водорода фенильного кольца гидразидного остатка комплексного соединения NiL¹·Py.

Для однозначного подтверждения сделанных выводов о плоскоквадратном строении комплексов по результатам ИК и ¹Н ЯМР спектроскопии перекристаллизацией из смеси метанола и хлороформа выращены монокристаллы: NiL²·Py на основе *n*-метилбензоилгидразона бензоилуксусного альдегида и пиридина, а также монокристаллы NiL⁴·NH₃ на основе *o*-гидроксибензоилгидразона *n*-метоксибензоилуксусного альдегида и аммиака.

На рис. 3 и 4 приведено строение молекул комплексов NiL²·Py и NiL⁴·NH₃. В обеих молекулах дважды депротонированные остатки лигандов выполняют одинаковую тридентатнохелатную функцию — с каждым атомом никеля связаны феноксидный атом кислорода, азометиновый атом азота и атом кислорода α -оксиазинной таутомерной формы лиганда, возникающей в результате переноса протона от атома азота к амидному атому кислорода. Четвертое координационное место атомов никеля в структуре NiL²·Py (рис. 3) занято молекулой пиридина, а в молекуле NiL⁴·NH₃ — аммиаком (рис. 4). Сопоставление идентичных межатомных расстояний в этих комплексах показывало, что они близки между собой (рис. 3 и 4, табл. 5).

Длины связей Ni—O и Ni—N в комплексе NiL²·Py (рис. 3, табл. 5) близки к найденным в координационном полиэдре в изоструктурных комплексах никеля(II) с бензоилгидразоном этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [8, 11], с бензоилгидразоном метилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [10, 14, 30] и с бензоилгидразоном трифторацетилацетона [7, 31, 32].

Рис. 2. Спектры ПМР комплексов никеля(II) в ДМСО- d_6 : NiL¹·Py

Рис. 3. Молекула комплекса никеля(II) $NiL^2 \cdot Py$

Рис. 4. Молекула комплекса $NiL^4 \cdot NH_3$

Таблица 5

Основные длины связей (d, Å) и валентные углы (ω , град.) в NiL² · Py и NiL⁴ · NH₃

Связь	d	Угол	ω					
	NiL ² ·Py							
Nil—O1	1.826(2)	01—Ni1—02	179.52(10)					
Nil—O2	1.835(2)	O1—Ni1—N1	95.76(12)					
Nil—N1	1.823(3)	O1—Ni1—N3	89.27(11)					
Ni1—N3	1.926(3)	O2—Ni1—N1	83.76(13)					
		O2—Ni1—N3	91.21(12)					
		N1—Ni1—N3	174.55(14)					
	1	$MiL^4 \cdot NH_3$						
O1—Ni	1.853(3)	02—Ni—O1	177.17(12)					
O2—Ni	1.821(3)	O1—Ni—N3	92.57(16)					
N2—Ni	1.818(3)	O2—Ni—N3	87.90(16)					
N3—Ni	1.934(3)	N2—Ni—O1	84.11(14)					
		N2—Ni—O2	95.56(14)					
		N2—Ni—N3	175.56(18)					

Центральный атом никеля в NiL²·Py незначительно отклоняется от «средней» плоскости координированных атомов O1, O2, N1, N3 (рис. 3). Большая разница между валентными углами O1NiN1 (95.76(12)°) и N1NiO2 (83.76(13)°) объясняется, на наш взгляд, наличием и размерами сопряженных пяти- и шестичленного металлоциклов вокруг иона-комплексообразователя, что хорошо согласуется с данными в работах [7, 28]. Атомы координированного полиэдра NiO1O2N1N3 лежат в одной плоскости с точностью ± 0.2 Å. Компланарные пяти- (NiO1N1N2C4)

Таблица б

Отклонение атомов от средних плоскостей в структуре $NiL^2 \cdot Py$

Атом и его отклонение, Å										
C1	C2	C3	C4	C5	C6	C7*	01*	C8*	C9*	
-0.00/6	0.0048	0.0026	-0.0070	0.0041	0.0032	0.0092	-0.5083	0.5332	0.5633	
C11	C12	C13	C14	C15	C16	C10*	C17*	N2*	02*	
0.0037	-0.0018	-0.0034	0.0067	-0.0049	-0.0003	0.0461	0.0322	-0.1201	0.2799	
N3	C18	C19	C20	C21	C22					
0.0032	0.0042	-0.0077	0.0040	0.0032	-0.0070					
Ni1	01	O2	N1	N3						
-0.0134	-0.0137	-0.0155	0.0220	0.0206						

Примечание: * отмечены атомы, не включенные в расчет данной плоскости.

Таблица 7

Длины связей и значения валентных углов водородных связей в молекуле NiL² · Py

D—H···· A	<i>D</i> —H, Å	H…A, Å	$D \cdots A$, Å	<i>D</i> —Н⋯ <i>А</i> , град.
C18—H18…N2 ^{#1}	0.93	2.59	3.437(4)	151.5
C18—H18…O2	0.93	2.60	2.937(4)	102.2
C22—H22…O1	0.93	2.48	2.861(3)	104.3

Код симметрии: ^{#1} –*x*+1, –*y*, –*z*+1.

и шестичленный (NiO2N1C1C2C3) металлоциклы сопряжены между собой и «плоские» в пределах 0.003—0.022 Å (табл. 6).

В молекуле NiL²·Ру один из атомов водорода координированной молекулы пиридина участвует в образовании водородных связей: внутримолекулярной (BMBC) C18—H18…O2 2.937(4) Å и межмолекулярной (MMBC) C18—H18…N2 3.437(4) Å, которая приводит к образованию центросимметричного димера (табл. 7) [10, 11, 31]. Молекулы расположены по центрированному мотиву таким образом, что пяти- и шестичленные металлоциклы образуют друг с другом псевдостопки (рис. 5). В молекуле имеется еще одна BMBC C18—H18…O1 2.861(3) Å,

 $Puc. \ 5. \ Проекция упаковки молекул <math display="inline">\mathrm{NiL}^2 \cdot \mathrm{Py}$ на плоскость ab

Таблица 8

Атом и его отклонение, Å										
Ni1 -0.0008	O1 -0.0467	O2 -0.0446	N2 0.0477	N3 0.0444						
Ni1 0.0175	O1 0.0188	C1 0.0109	N1 0.0086	N2 -0.0182	C11* -0.0015	C2* -0.0212	O2* -0.0363	N3* -0.1532		
Ni1 0.0136	O2 -0.0098	N2 -0.0139	C2 0.0047	C3 0.0053	C4 0.0001	N3* 0.1386	O1* -0.0536	N1* -0.0062	C5* 0.0063	
C5 -0.0101	C6 0.0048	C7 0.0062	C8 -0.0117	C9 0.0062	C10 0.0047	C4* -0.0233	O4* -0.0829			
C11 -0.0134	C12 0.0050	C13 0.0043	C14 -0.0051	C15 -0.0034	C16 0.0129	C1* -0.0129	O3* 0.0223			

Отклонение атомов от средних плоскостей в структуре $NiL^4 \cdot NH_3$

Примечание: * отмечены атомы, не включенные в расчет данной плоскости.

величина валентного угла которой равна 104.3°. Длины связей для этого фрагмента C22—H22 и H22…O1 равны 0.93 Å и 2.48 Å соответственно.

Выводы о плоском строении комплекса $NiL^4 \cdot NH_3$ с тридентатной координацией дианионного остатка лиганда, полученные по результатам анализа спектров, подтверждены нами методом РСА (рис. 4, табл. 5).

В комплексе NiL⁴·NH₃ длины связей Ni—O и Ni—N (табл. 5) близки к аналогичным значениям длин связей в подобных соединениях никеля(II) с координационной сферой [N₂O₂], что хорошо согласуется с опубликованными данными [10, 11], но значительно короче, чем Ni—N1 1.852(6) Å [9] и 1.90—1.99 Å [29] по сравнению с аналогичными образцами, а значение длины связи Ni—N3 (1.934(3) Å) (табл. 5) хорошо согласуется с данными из [22, 28].

Атомы координационного полиэдра NiO1O2N1N3 лежат в одной плоскости с точностью ± 0.045 Å (табл. 8). Четвертое место в плоском квадрате координационного узла *транс*-N₂O₂ занимает атом азота молекулы аммиака. Центральный атом никеля в NiL⁴·NH₃ имеет незначительное отклонение (0.008 Å) от средней плоскости координированных атомов O1, O2, N2, N3, но это разница в большей степени ощущается в случае с примерами пяти- (0.0175 Å) и шестичленных (0.0136 Å) металлоциклов.

Практически плоские пяти- и шестичленные сопряженные металлоциклы строго не компланарны. Такое искажение компланарности двух металлоциклов, на наш взгляд, объясняется присутствием двух объемных групп *n*-CH₃O—C₆H₄— в β-дикетонном фрагменте и *o*-HO—

Рис. 6. Упаковка молекул $NiL^4 \cdot NH_3$ в структуре

401

 C_6H_4 — в бензгидразидной части остатка молекулы лиганда H_2L^4 . Упаковка молекул в структуре комплекса NiL⁴·NH₃ показана на рис. 6.

Большая разница между валентными углами O1NiN2 (84.11(14)°) и N3NiO1 (92.57(16)°) также следует из разницы и размеров сопряженных пяти- и шестичленных металлоциклов вокруг иона-комплексообразователя. Валентные углы с участием атома O2 занимают интервал 87.90—95.56°, а углы O1NiO2 и N2NiN3 равны 177.17(12)° и 175.17(12)° соответственно [10, 11, 27, 30].

выводы

Методом спектроскопии ¹Н ЯМР выявлено значительное влияние природы заместителей в бензольном кольце на электронное строение комплексов. Значительный эффект наблюдается не только в области фенильных фрагментов, но и распространяется на достаточно удаленный от заместителя координационный узел соединения.

Методом PCA однозначно доказано молекулярное строение полученных комплексных соединений $NiL^2 \cdot Py$ и $NiL^4 \cdot NH_3$.

СПИСОК ЛИТЕРАТУРЫ

- 1. K.C. Joshi, R. Bohra, B.S. Joshi. Inorg. Chem., 1992, 4, 598-603.
- 2. V.V. Pakal'nis, I.V. Zerova, S.I. Yakimovich, A.Yu. Ershov, I.V. Lagoda. Russ. J. Org. Chem., 2009, 45(2), 285–291.
- V.V. Alekseev, A.V. Zerov, V.A. Pakalnis, S.I. Yakimovich. Abstracts: Tretia vserossiyskaya nauchnaya konferentsiya (s mezhdunarodnym uchastiyem): «Uspekhi sinteza i kompleksoobrazovaniya» (Third All-Russia Scientific Conference with International Participation «Advances in Synthesis and Complexing»). Moscow, Russia, April 21–25, 2014. Moscow: RUDN, 2014, 102. (In Russ.)
- 4. V.V. Alekseyev. Chem. Heterocycl. Compd., 2013, 49(3), 408-416.
- 5. E.A. Shokova, J.K. Kim, V.V. Kovalev. Russ. J. Org. Chem., 2015, 51(6), 755-830.
- V.V. Alekseev, S.I. Yakimovich, N.S. Guliy, A.V. Zerov, A.Yu. Ershov. Abstracts: Tretia vserossiyskaya nauchnaya konferentsiya (s mezhdunarodnym uchastiyem): «Uspekhi sinteza i kompleksoobrazovaniya» (Third All-Russia Scientific Conference with International Participation «Advances in Synthesis and Complexing»). Moscow, Russia, April 21–25, 2014. Moscow: RUDN, 2014, 188. (In Russ.)
- 7. K.G. Avezov, B.B. Umarov, S.A. Talipov, R.J. Kunafiev, B.Y. Ibragimov. IUCrData, 2016, 3, 1-3.
- 8. M.A. Tursunov, K.G. Avezov, B.B. Umarov, N.A. Parpiev. Russ. J. Coord. Chem., 2017, 43(4), 93-96.
- 9. M.A. Tursunov, B.B. Umarov, M.Ya., Ergashov, K.G. Avezov. J. Struct. Chem., 2020, 61(1), 73–85.
- M.A. Tursunov. Complexes of Some 3d Metals Based on Derivatives of Ketoaldehydes and Ketoesters, Their Structure and Properties: Ph.D. (Chem.) Dissertation. Bukhara: BukhSU, 2019.
- 11. B.B. Umarov, M.A. Tursunov, V.V. Minin. Complexes with Derivatives of Ketoaldehydes and Ketoesters. Tashkent: Nishon-noshir, **2016**.
- 12. C.I. Someya, S. Inoue, E. Irran, S. Enthaler. Inorg. Chem. Commun., 2014, 44, 114–118.
- 13. C.I. Someya, M. Weidauer, S. Enthaler. Inorg. Chim. Acta, 2015, 434, 37-40.
- N.A. Parpiev, B.B. Umarov, K.G. Avezov. Perevatives of Perfluoroalkyl β-Diketones and Their Complex. Tashkent: AOO Dizayn-Press, 2013.
- O.V. Konnik, V.F. Shul'gin, E.A.Zamnius, A.N. Gusev, V.V. Minin. Russ. J. Inorg. Chem., 2015, 60(5), 595–601.
- A. Mukhopadhyay, G. Padmaja, Satyanarayan Pal, Samudranil Pal. J. Organomet. Chem., 2012, 6(4), 381– 386.
- 17. L.F. Tietze, T. Eicher. Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium. Wiley-VCH, **1991**.
- 18. L.N. Bazhenova. Kolichestvennyy elementnyy analiz organicheskikh soyedineniy (Quantitative Elemental Analysis of Organic Compounds). Yekaterinburg, **2008**. (In Russ.)
- B.N. Tarasevich, IK spektry osnovnykh klassov organicheskikh soyedineniy: spravochnyye materialy (IR Spectra of Principal Classes of Organic Compounds. Reference Materials). Moscow: MGU, 2012. (In Russ.)
- A.A. Kazitsyna, N.B. Kupletskaya. Primeneniye UF-, IK- i YaMR-spektroskopii v organicheskoy khimii (Application of UV, IR and NMR Spectroscopy in Organic Chemistry). Moscow: Kniga po Trebovaniyu, 2013. (In Russ.)

- 21. CrysAlisPro, Version 1.171.33.40. Oxford Diffraction, 2007.
- 22. G.M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112-122.
- 23. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341.
- 24. Kh.S. Gaybullayev, B.B. Umarov, N.A. Parpiyev, S.I. Yakimovich, I.V. Zerova. Uzb. Khim. J., 1994, (3), 12–16.
- 25. A. Mukhopadhyay, S. Pal. Eur. J. Inorg. Chem., 2006, 2006(23), 4879–4887.
- 26. C.I. Someya, S. Inoue, S. Krackl, E. Irran, S. Enthaler. Eur. J. Inorg. Chem., 2006, 2012(8), 1269–1277.
- 27. B.B. Umarov. Complex Compounds of Some Transition Metals with bis-5-Hydroxypyrazolines. Ph.D. (Chem.) Dissertation. Tashkent: IU AN RUz., **1996**.
- 28. M.T. Toshev, V.G. Yusupov, Kh.B. Dustov, N.A. Parpiev. Crystal Chemistry of Metal Complexes with Hydrazides and Hydrazones. Tashkent: Fan, **1994**.
- 29. G.Sh. Karimova. Coordination Compounds of Some 3*d* Metals with Derivatives of Benzoxazoline and Quinazoline: Ph.D. Thesis. Tashkent: NUUz, **2012**.
- 30. B.B. Umarov, M.T. Toshev, S.O. Saidov. Koord. Khim., 1992, 18(9), 980-984. (In Russ.)
- 31. B.B. Umarov, K.G. Avezov, M.A. Tursunov, N.G. Sevinchov, N.A. Parpiev, G.G. Aleksandrov. *Russ. J. Coord. Chem.*, **2014**, *40*(7), 473–476.
- K.G. Avezov, S.I. Yakimovich, B.B. Umarov, V.V. Pakal'nis, G.G. Aleksandrov, T.N. Niyazkhanov, N.G. Sevinchov, N.A. Parpiev. *Russ. J. Coord. Chem.*, 2011, 37(4), 275–280.