УДК 541.49+547.288+547.574

ИССЛЕДОВАНИЕ КОМПЛЕКСОВ НИКЕЛЯ(II) С АРОИЛГИДРАЗОНАМИ ЭТИЛОВОГО ЭФИРА 5,5-ДИМЕТИЛ-2,4-ДИОКСОГЕКСАНОВОЙ КИСЛОТЫ

С.Ф. Абдурахмонов, М.А. Турсунов*, Б.Б. Умаров, М.Я. Эргашов, К.Г. Авезов

(Бухарский государственный университет, Узбекистан; *e-mail: tursunovma@ mail.ru)

Синтезированы и исследованы комплексные соединения никеля(II) с ароилгидразонами этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты(H₂L¹-H₂L⁶). Методами элементного анализа, ИК-, ¹Н-ЯМР-спектроскопии и РСА установлены состав и строение полученных комплексных соединений на основе этих лигандов. Полный набор РСА данных комплекса NiL⁶·3Py депонирован в Кембриджском банке структурных данных (депонент ССDС № 1911468) и может быть свободно получен по запросу на сайте www.ccdc.cam.ac.uk/data request/cif.

Ключевые слова: ароилгидразоны, этиловый эфир 5,5-диметил-2,4-диоксогексановой кислоты, кристаллическая структура.

В последние годы исследования в области координационной химии отличаются устойчивой тенденцией к переносу центра тяжести от простых моноядерных соединений к более сложным системам, что обусловлено в первую очередь поиском новых молекулярных материалов и каталитических систем [1–3]. Эти работы наряду с рассмотрением геометрического и электронного строения, позволяют сделать обоснованные выводы и предсказать пути направленного синтеза комплексных соединений с заданными свойствами [3–5].

Нами синтезированы комплексные соединения [NiLⁿ·NH₃ (n = 1-6) и NiL⁶·3Py] на основе H₂L¹-H₂L⁶ (ароилгидразонов этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты) [6-8]. Полученные соединения диамагнитны, хорошо растворимы в хлороформе, бензоле, пиридине и практически не растворимы в воде. Данные спектров ИК и ¹Н-ЯМР указывают на плоско-квадратное строение этих комплексов.

Методика эксперимента

В работе использовали лиганды $H_2L^1 - H_2L^6$, синтезированные согласно [4, 5], ацетат никеля(II), аммиак (все «х.ч.»), пиридин («ч.д.а.»), а также растворители C_2H_5OH , диэтиловый эфир («х.ч.», перегнанные).

Синтез комплекса NiL⁴·NH₃. К раствору 1,59 г (0,005 моля) бензоил-гидразона этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты (H_2L^4) в 25 мл этанола постепенно добавляли горячий раствор 1,25 г (0,005 моля) ацетата Ni(II) в 15 мл концентрированного аммиака и перемешивали в течении 30 мин при 60 °С. Из полученного красного раствора через 5–10 мин выпадает поликристаллический осадок красного цвета. Комплекс отфильтровывали, промывали водой, этиловым спиртом и высушивали в вакуум-эксикаторе над P_2O_5 . Выход NiL⁴·NH₃ составлял 1,35 г (69%).

Аналогичным путем были синтезированы другие аммиачные комплексы Ni(II) с соответствующими лигандами $H_2L^1-H_2L^3$ и $H_2L^5-H_2L^6$ (табл. 1).

ИК-спектры поглощения записывали на спектрометре «Specord 75IR» в интервале 400–4000 см⁻¹ в таблетках КВг.

Спектры ¹Н-ЯМР 5–10%-х растворов комплексных соединений снимали на спектрометре «Bruker DPX-300» (300,13 МГц).

При растворении NiL⁶·NH₃ в большом объеме пиридина выпадают монокристаллы (NiC₃₂H₃₄N₆O₆)₂, соответствующие формуле NiL⁶·3Py. PCA соединения NiL⁶·3Py проводили на автоматическом дифрактометре «Xcalibur, Oxford Diffraction» (λ CuK_a-излучение, графитовый монохроматор, ω -сканирование, 2 θ_{max} = 50°. Структура расшифрована и уточнена МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализованы из карт электронной плотности разностного синтеза Фурье и уточнены в изотропном приближении [9–11].

Результаты и их обсуждение

В настоящем сообщении обсуждается изучение состава и строения комплексных соедине-

Таблица 1

Соедине- ние	Брутто-фор- мула	Выход, %	<i>Т</i> _{плав.} , °С	Найдено / вычислено, %				
				Ni	С	Н	Ν	
$NiL^1 \cdot NH_3$	$\mathrm{NiC}_{19}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}_{4}$	63	297–298	13,43/13,49	52,37/52,44	6,42/6,49	12,94/12,88	
$NiL^2 \cdot NH_3$	NiC ₁₈ H ₂₅ N ₃ O ₅	58	278–280	13,86/13,91	51,15/51,22	5,94/5,97	9,98/9,95	
$NiL^3 \cdot NH_3$	NiC ₁₈ H ₂₅ N ₃ O ₄	66	265–267	14,39/14,45	53,19/53,24	6,17/6,20	10,41/10,35	
$NiL^4 \cdot NH_3$	NiC ₁₇ H ₂₃ N ₃ O ₄	69	258–260	14,91/14,97	52,02/52,08	5,87/5,91	10,78/10,72	
$NiL^5 \cdot NH_3$	NiC ₁₇ H ₂₂ N ₃ O ₄ Br	73	304–306	12,42/12,46	43,32/43,35	4,68/4,71	8,95/8,92	
$NiL^6 \cdot NH_3$	NiC ₁₇ H ₂₂ N ₄ O ₆	74	274–276	13,43/13,46	46,69/46,72	5,04/5,07	12,87/12,82	
NiL ⁶ ·3Py	NiC ₃₂ H ₃₄ N ₆ O ₆	78	282–284	8,88/8,93	58,43/58,47	5,17/5,21	8,96/8,93	

Выходы, температуры плавления и результаты элементного анализа комплексных соединений Ni(II) на основе ароилгидразонов этилового эфира 2,4-диоксокарбоновой кислоты

ний никеля(II), полученных на основе продуктов конденсации этилового эфира 5,5-диметил-2,4диоксогексановой кислоты с гидразидами *пара*замещенных бензойных кислот (схема, I). Результаты элементного анализа и спектроскопических исследований позволили установить строение полученных соединений (схема, II).

Методами элементного анализа, ИК- и 1 H-ЯМР-спектроскопии установлены состав и строение полученных комплексов. ИК-спектр комплексного соединения NiL 1 ·NH₃ отличается от спектра лиганда H₂L 1 тем, что в нем отсутствуют полосы поглощения в области 1660–1700 и 3400 см $^{-1}$ (рис. 1). Это свидетельствует о депротонизации лиганда в процессе комплексообразования.

Во многом ИК-спектр комплекса NiL¹·NH₃ идентичен с ИК-спектрами изученных ранее комплексных соединений никеля(II) (рис. 1, табл. 2) [4, 12–14]. Необходимо отметить наличие в спектре комплексного соединения NiL¹·NH₃ интенсивной полосы в области 1730 см⁻¹, которая обусловлена валентными колебаниями связи С=О сложноэфирного заместителя. В спектре ИК исходного лиганда, существующего в свободном состоянии в гидразонной форме, эта полоса проявляется при 1740–1750 см⁻¹. Такое низкочастотное смещение $v_{(C=0)}$ при переходе от лигандов к комплексам обусловлено включением электроноакцепторной группы -СООС₂Н₅ в систему сопряжения с его шестичленным металлоциклом. В ИК-спектре комплекса ряд полос средней и сильной интенсивности в области 1400–1620 см⁻¹ следует связать с преимущественно валентными и деформационными колебаниями полуторных связей в пяти- и шестичленных металлоциклах [4, 5, 7, 12]. В ИК-спектре комплекса NiL¹·NH₂ наблюдаются также полосы поглощения в области 3375, 3337, 3280 и 3170 см⁻¹, которые следует отнести к симметричным и антисимметричным валентных колебаниям молекулы аммиака. В ИК-спектре NiL⁶·3Ру, как и следовало

A=NH₃: X=N(CH₃)₂ (NiL¹·NH₃); OCH₃ (NiL²·NH₃); CH₃ (NiL³·NH₃); H (NiL⁴·NH₃), Br (NiL⁵·NH₃), NO₂ (NiL⁶·NH₃); X=NO₂, A=Py (NiL⁶·3Py).

Рис. 1. ИК-спектр комплексного соединения NiL¹·NH₃

ожидать, полосы поглощения в этой области отсутствуют и появляется полоса около 1600 см⁻¹, отнесенная к $v_{(C=N)}$ пиридина [3–7, 12, 17].

Спектры ПМР исследуемых комплексов позволяют получить следующую информацию. Спектр ПМР соединения NiL⁴·NH₃ в растворе CCl₄ + DMSO-d₆ с бензоилгидразоном β -кетоэфира очень похож на спектры комплексов никеля с различными ацил- и ароилгидразонами β -дикетонов, β -кетоальдегидов и β -кетоэфиров (рис. 2.) [3–8, 12, 17]. Следует отметить, что четко проявляются сигналы от протонов этильного радикала сложноэфирной группы C₂H₅OOC (как и от других концевых протонов). Сигналы в виде триплета от трех протонов группы –С H_3 -зафиксированы при δ 1.36 м.д., а протоны –С H_2 -группы резонируют в виде квадруплета при δ 4.28 м.д., соотношении интегральной интенсивности, равной 3:2, и константе спин-спинового взаимодействия (КССВ) $J_{AB} = 7$ Гц. Сигналы от одиночного винильного протона зафиксированы при δ 5.03 м.д., а девять протонов *трет*-С₄ H_9 -заместителя резонируют в виде синглета, при δ 0.99 м.д. Мультиплетные сигналы от протонов фенильного радикала гидразонного фрагмента молекулы резонируют в области слабых полей с центрами при δ 7.14 и 7.67 м.д. Вид сигналов несколько усложнен

Таблица 2

Соединение	NH ₃	С–Н	C=N	N=C-C=N	N=C-O ⁻	N–N	Ni–O
NiL ¹ ·NH ₃	3354	2975	1600	1525	1494	1068	483
NiL ² ·NH ₃	3360	2972	1608	1532	1507	1071	490
NiL ³ ·NH ₃	3345	2973	1595	1523	1464	1075	475
NiL ⁴ ·NH ₃	3355	2984	1600	1527	1488	1073	490
NiL ⁵ ·NH ₃	3358	2976	1605	1531	1489	1075	487
NiL ⁶ ·NH ₃	3357	2977	1599	1528	1484	1070	488
NiL ^{6.} 3Py	_	2976	1595	1530	1486	1070	485

Параметры ИК-спектров комплексных соединений Ni(II) на основе ароилгидразонов этилового эфира 2,4-диоксокарбоновых кислот

-		_					~
Т	а	0	Л	И	Ш	а	-3

Соединение	X	C(CH ₃) ₃	CH=	COOC ₂ H ₅	NH3	C_6H_4X
NiL ^{1.} NH ₃	2,88	1,04	5,08	1,34; 4,26	2,05	7,35; 7,63
NiL ² ·NH ₃	2,92	1,06	5,12	1,33; 4,26	2,06	7,37; 7,65
NiL ³ ·NH ₃	2,24	1,05	5,10	1,35; 4,28	2,08	7,40; 7,68
NiL ⁴ ·NH ₃	-	0,99	5,18	1,36; 4,27	2,07	7,14; 7,25; 7,67
NiL ⁵ ·NH ₃	-	1,03	5,13	1,37; 4,28	2,06	7,36; 7,63
NiL ⁶ NH ₃	-	0,97	5,32	1,38; 4,28	2,08	7,50; 7,74
NiL ^{6.} 3Py	-	1,02	5,34	1,39; 4,30	_	7,56; 7,78

Параметры спектров ¹Н-ЯМР комплексов никеля(II) в растворе CCl₄ + d₆-DMSO (δ, м.д.)

ввиду их перекрывания. Сигнал от протонов координированной молекулы NH_3 в виде синглета с интенсивностью 3Н зафиксирован при δ 2.07 м.д. (рис. 2, табл. 3).

При растворении аммиачного комплекса NiL⁶·NH₃ на основе *пара*-нитробензоилгидразона этилового эфира 5,5-диметил-2,4диоксогексановой кислоты (H₂L⁶) в избытке пиридина, в отличие от ранее выращенных монокристаллов плоско-квадратного строения типа NiL·NH₃, были выделены кристаллы, которые резко отличаются от своих аналогов молекулярной структурой [4-8, 12]. Координационная сфера иона Ni(II) в кристалле имеет октаэдрическое строение с набором донорных атомов Ni(*транс*-N₄O₂) за счет замены аммиака пиридином и дополнительной координации двух молекул пиридина в аксиальные положения (рис. 3, табл. 4).

Структура (NiC₃₂H₃₄N₆O₆)₂ была подвергнута РСА-исследованию на автоматическом дифрактометре «Xcalibur, Oxford Diffraction» (СиК_а-излучение, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 50^\circ$. Кристаллы состава (NiC₃₂H₃₄N₆O₆)₂ триклинные с параметрами элементарной ячейки: *a* = 9,5826(5), *b* = 14,1432 (6), c = 26,1557 (13) Å, $\alpha = 76,300$ (4)°, $\beta =$ $89,447(4)^{\circ}, \gamma = 73,234(4)^{\circ}, V = 3291,0(3) \text{ Å}^3,$ ρ_(выч.) = 1,659 г/см³, Z = 2, пр. гр. Р-1. Такие изменения координационной сферы от плоскоквадратной (через квадратно-пирамидальную) до октаэдрического полиэдра были ранее исследованы нами на примере как моноядерных комплексов меди(II), так и гетеробиядерных комплексов никеля(II) и меди(II) [8, 12].

Молекула NiL⁶·3Ру имеет октаэдрическое строение, а дважды депротонированный тридентатный лигандный остаток образует сочленные пяти- и шестичленные металлоциклы вокруг иона никеля(II) (рис. 3). Расстояние Ni-N (1) (1,981(2) Å) металлхелата значительно короче чем длины трех связей донорного основания Ni-N (4) (2,092 Å), Ni-N (5) (2,164 (2) Å) и Ni-N (6) (2,154 (2) Å). Разница между длинами этих связей обусловлена их положением вокруг центрального иона-комплексообразователя. Остаток молекулы лиганда координирован двумя атомами кислорода и атомом азота гидразонного фрагмента. Четвертое место в плоском квадрате транс-N2O2 координационного узла и два аксиальные положения занимают три молекулы пиридина, доводя окружение центрального иона до октаэдрического полиэдра. Длины связей Ni-O (1) 2,0665 Å и Ni-O (2) 2,025 Å близки к аналогичным значениям длин связей в ранее изученных комплексных соединениях никеля с *транс*-[N₂, O₂] координационной сферы [4, 6, 12– 15]. Центральный атом никеля на 0,0272 Å отклоняется от «средней» плоскости пятичленного металлоцикла NiN(1)N(2)C(1)O(2), по сравнению с шестичленной плоскостью NiN(1)C(8)-C(10)O(2) C(11) (0,0081 Å). Это объясняется большим внутренним напряжением связей пятичленного цикла по сравнению с шестичленным. Практически плоские пяти- и шестичленные сопряженные металлоциклы копланарны между собой, что ранее обсуждалось в работах [4, 16, 17]. При сравнении строения донорных молекул пиридина, координированных вокруг иона никеля(II) в комплексном соединении, молекула пиридина с набором атомов N(4)C(18)C(19)C(20)C(21)C(22) является наиболее плоской по сравнению с двумя другими молекулами пиридина, координированными в аксиальные положения (табл. 5). Это, на наш взгляд, объясняется образованием обратной d-πдативной связи между d-электронами иона Ni(II)

Параметр	Значение
М	1314,72
Температура, К	298
Сингония	Триклинная
Пр.гр.	$P\overline{1}$
a, Å	9,5826 (5)
b, Å	14,1432 (6)
<i>c,</i> Å	26,1557 (13)
α,град	76,300 (4)
β, град	89,447 (4)
ү, град	73,234 (4)
<i>V</i> , Å ³	3291,0 (3)
Ζ	2
ρ(выч.), г/см ³	1,327
μ, мм ⁻¹	1,28
Размеры кристалла, мм	0,2×0,3×0,3
Область сканирования по	3,4–76,2
θ, град	$-11 \le h \le 11, -17 \le k \le 14, -32$
Область индексов <i>h</i> , <i>k</i> , <i>l</i>	$\leq l \leq 32$
Собрано отражений	<u>24252</u>
Независимых отражений(R_{int})	<u>13251 (0,042)</u>
Отражений с $I > 2\sigma(I)$	<u>8945</u>
Число уточняемых параметров	<u>820</u>
GOOF (F^2)	1,021
$R_{l}, wR_{2}(I > 2\sigma(I))$	0,0513; 0,1457
R_1 , w R_2 (все отражения)	0,051; 0,146
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}(e {\rm \AA}^{-3})$	<u>0,46–0,48</u>

Основные кристаллографические данные и параметры уточнения структуры NiL⁶·3Py

Рис. 4. Проекции кристаллической упаковки молекул NiL⁶·3Py на плоскость *ас*

Таблица 4

Таблица 5

Отклонение атомов от «средних» плоскостей в структуре NiL⁶·3Ру

Атом и его отклонение, Å								
C (1)	C (2)	C (3)	C (4)	C (5)	C (6)	C (7)		
-0,0392	0,0263	0,0275	-0,0074	-0,0265	-0,0022	0,0215		
Ni (1) -0,0272	C (1) -0,0261	N (1) 0,0291	N (2) -0,0106	O (1) 0,0347				
Ni (1) 0,0081	N (1) 0,0064	C (8) -0,0153	C (10) 0,0059	O (2) -0,0206	C (11) 0,0155			
C (8) 0,0038	C (9) -0,0138	O (3) 0,0045	O (4) 0,0055	C (12)* -0,0226	C (13)* -1,4119			
N (4)	C (18)	C (19)	C (20)	C (21)	C (22)	Ni (1)*		
-0,0010	0,0003	0,0009	-0,0015	0,0008	0,0004	-0,0939		
N (6)	C (23)	C (24)	C (25)	C (26)	C (27)	Ni (1)*		
0,0126	-0,0229	0,0049	0,0196	0,0113	-0,0256	-0,1018		
N (5)	C (28)	C (29)	C (30)	C (31)	C (32)	Ni (1)*		
0,0549	-0,1011	0,0263	0,0966	0,0278	-0,1045	-0,1948		
C (33)	C (34)	C (35)	C (36)	C (37)	C (38)	C (39)	N (9)*	
-0,0050	-0,0052	0,0031	0,0092	-0,0147	0,0019	0,0107	-0,0174	
C (33) 0,3328	N (8) 0,3952	N (7) -0,5105	N (12) 0,2425	O (7) -0,4601				
Ni (2)	C (42)	C (43)	C (40)	N (7)	C (8)	C (46)*	C (47)*	
-0,0433	-0,0376	-0,0070	0,0159	0,0260	0,0460	-0,0230	-0,1030	
C (40) -0,0346	C (41) 0,0112	C (44) -0,0451	O (9) 0,0580	O (10) 0,0104				
N (10)	C (50)	C (51)	C (52)	C (53)	C (54)	Ni (2)*		
-0,0073	-0,0010	0,0109	-0,0128	0,0047	0,0055	-0,2420		
N (11)	C (55)	C (56)	C (57)	C (58)	C (59)	Ni (2)*		
-0,0060	-0,0042	0,0078	-0,0018	-0,0081	0,0122	0,0286		
N (12)	C (60)	C (61)	C (62)	C (63)	C (64)	Ni (2)*		
-0,0125	0,0131	-0,0030	-0,0076	-0,0081	0,0018	-0,0595		

*Атомы, не включенные в расчет данной плоскости.

и π -орбиталью молекулы пиридина (табл. 5). Упаковка структурных единиц в кристалле молекулы NiL⁶·3Py показана на рис. 4.

В результате исследований с помощью ИК- и 1 H-ЯМР-спектроскопии было обнаружено, что в процессе комплексообразования исходные лиганды с 5-гидрокси-2-пиразолинновым строением переходят в линейную енгидразин-оксиазинную форму и координируют с центральным ионом тремя донорными (N, O₂) атомами. Методом РСА было показано, что дважды депротонированный 5-гидрокси-2-пиразолиновый остаток лиганда $H_{2}L^{4}$ циклической формы в процессе комплексообразования переходит в линейную енгидразин-оксиазинную форму и координирует с центральным ионом, образуя спаренные пяти- и шестичленные псевдоароматические металлоциклы $[N_2, O_2]$, где четвертое место занимает молекула аммиака. При перекристаллизации молекул комплексного соединения NiL⁶·NH₃ на основе *пара*-нитробензоилгидразона этил 5,5-диметил-2,4-диоксогексановой кислоты (H_2L^6) в избытке пиридина выпадают кристаллы $(NiC_{32}H_{34}N_6O_6)_2$ двух молекул NiL⁶·3Py с октаэдрическим окружением центрального иона.

Конфликта интересов нет.

СПИСОК ЛИТЕРАТУРА

- Agrawal A., Sharma K.M., Prasad R.N. // Pol. J. Chem. 2007. Vol. 81. N 12. P. 2081.
- 2. Пакальнис В.А., Зерова И.В., Якимович С.И., Ершов А.Ю., Лагода И.В. // ЖОрХ. 2009. Т. 45. № 2. С. 295.
- 3. *Турсунов М.А., Умаров Б.Б.* // Universum: химия и биология: электронный научный журнал. 2018. № 3 (45). С. 45.
- Умаров Б.Б., Турсунов М.А., Минин В.В. Комплексы с производными кетоальдегидов и кетоэфиров. Ташкент, 2016.
- Авезов К.Г., Умаров Б.Б. // Universum: химия и биология: электрон. научн. журн. 2017. № 2 (32). С. 39.
- 6. *Турсунов М.А., Умаров Б.Б.* // Universum: химия и биология: электрон. научн. журн. 2018. № 12 (54). С. 50.
- Tursunov M.A., Avezov K.G., Umarov B.B., Parpiev N.A. // Russian J. of Coord. Chem. 2017. Vol. 43. N 4. P. 93.

- 8. *Турсунов М.А., Умаров Б.Б., Авезов К.Г.* // Развитие науки и технологий. Научно-технический журнал. 2018. № 2. С. 71.
- 9. CrysAlisPro. Oxford Diffraction. 2007. Version 1.171.33.40.
- 10. Sheldrick G.M. //ActaCrystallogr. 2008. Vol. A 64. P. 112.
- 11. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. Vol. 42. P. 339.
- Умаров Б.Б. Комплексные соединения некоторых переходных металлов с бис-5-оксипиразолинами. Автореф. дис. ... докт. хим. наук. Ташкент, 1996.
- 13. *Kawamoto T., Kushi Y.* // Bull. Chem. Soc. Jpn. 2004. Vol. 77. N 2. P. 289.
- 14. Тошев М.Т., Юсупов В.Г., Дустов Х.Б., Парпиев Н.А. Ташкент., 1994. 15. Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. М., 1990.
- 16. Умаров Б.Б., Тошев М.Т., Саидов С.О. и др. // Коорд. химия. М., 1992. Т. 18. № 9. С. 980.
- 17. Tursunov M.A., Avezov K.G., Umarov B.B. // Moscow University Chemistry Bulletin. 2019. Vol. 74. N. 3. P. 138.

Поступила в редакцию 10.03.2020 Получена после доработки 12.04.2020 Принята к публикации 14.11.2020

RESEARCH OF NICKEL(II) COMPLEXES WITH AROYL HYDRAZONES OF 5,5-DIMETHYL-2,4-DIOXOGEXANE ACID ETHYL ESTER

S.F. Abduraxmonov, M.A. Tursunov*, B.B. Umarov, M.Ya. Ergashov, K.G. Avezov

(Uzbekistan. Bukhara State University; *e-mail: tursunovma@mail.ru)

The complex compounds of nickel(II) with aroylhydrazones of ethyl 5,5-dimethyl-2,4dioxohexanoic acid $(H_2L^1 - H_2L^6)$ were synthesized and studied. The composition and structure of the obtained complex compounds based on these ligands are established by elemental analysis, infrared spectroscopy, proton-magnetic resonance spectroscopy, and X-ray diffraction analysis. A full set of X-ray diffraction data was deposited in the Cambridge Structural Database (deposit CCDC N^2 1911468) and it can be gotten from the site www.ccdc.cam.ac.uk/data request/cif.

Key words: aroylhydrazone, ethyl ester of the 5,5-dimethil-2,4-dioxohexanoic acid, crystalline structure.

Сведения об авторах: Абдурахмонов Сайфиддин Файзуллаевич – докторант Бухарского государственного университета (abdu_sayfiddin@mail.ru); Турсунов Мурод Амонович – доцент Бухарского государственного университета, докт. философии по химическим наукам, (tursunovma@mail.ru); Умаров Бако Бафоевич – профессор Бухарского государственного университета, докт. хим. наук (umarovbako@mail.ru); Эргашов Мансур Ярашович – профессор Бухарского государственного университета, канд. хим. наук (ergashovmya@mail. ru); Авезов Кувондик Гиясович – доцент Бухарского государственного университета, докт. философии по химическим наукам (avezovkg@mail.ru).