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Abstract. The modern statement of the problem of optimization of approximate integration formulas consists in minimizing the
norm of the error functional formula on chosen normed spaces. This paper is devoted to cubature formulas over space H̃p

µ
(Tn)). It

was proved that the cubature formula of rectangles (4) is optimal among cubature formulas of the form (6) and exact at constants
over space H̃p

µ
(Tn) .

INTRODUCTION

When studying the best formulas for approximate integration, the first question that arises is whether such formulas
exist. This issue was studied quite extensively. Although it is rather complicated, as evidenced by [1], significant
progress has been made in its solution. Until recently, considerations of the best quadrature formulas were based on
the study of spline-functions of a special form (monosplines) related to the considered formulas [2, 3, 4, 5, 6, 7, 8] .
These research methods have not yet been effectively applied in the study of cubature formulas in W̃ (m)

2 (Tn), which
are multidimensional analogs of spaces W (m)

2 (T1).
In [9, 10, 11, 12, 13, 14, 15, 16], the problem of optimality of cubature and quadrature formulas with respect to

some specific space was studied. Most of them are considered in the Sobolev space [1]. Multidimensional cubature
formulas differ from one-dimensional ones in two ways:

1) the forms of multidimensional domains of integration are infinitely diverse;
2) the number of integration nodes grows rapidly with increasing space dimension.
Problem 2) requires special attention to the construction of the most economical formulas.
The main problem of multidimensional integration is to find an integral of a given accuracy.

IΩ(x) =
∫
Ω

f (x)dx =
∫
En

εΩ f (x)dx, (1)

where x - is the point of n-dimensional space En, εΩ(x)- is the characteristic function of the bounded integration
domain Ω, and function f (x) is continuous in the closure of domain Ω.

The multidimensional integral (1) is approximately expressed by the sum

∫
Ω

f (x)dx≈
N

∑
λ=1

Cλ f (x(λ )), (2)

x(λ ) are the nodes, Cλ are the coefficients of formula (2) and N is the number of nodes.
The error of the cubature formula of the form (2) is determined by the following equality

R( f ) =
∫
Ω

f (x)dx−
N

∑
λ=1

Cλ f (x(λ )).

In what follows, n-dimensional torus Tn and space H̃µ
p are taken as domain Ω and n-dimensional space En, respectively.

Definition 1. The set Tn = {x = (x1,x2, . . . ,xn)}; xk = {tk}, tk ∈ R, where {tk} = tk− [tk] , i.e. fractional part tk,
is called n - dimensional torus Tn [1].
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STATEMENT OF THE PROBLEM

The present study is devoted to cubature formulas over space H̃µ
p (Tn).

Let continuous positive function µ(ξ ) be given, whose growth does not exceed the power law. Function µ(ξ ) is
called the weight function.

Let H be a matrix of order n and detH > 0.
Definition 2. Space H̃µ

p (Tn) is defined as the space of periodic functions with period matrix H of the following
form

f (x) = ∑
γ

f̂ [γ]e−2πiγ∗H−1x

for which the sum is finite

∑
γ

∣∣ f̂ [γ]∣∣pµ
p(γH−1).

The norm in space H̃µ
p is determined by the following formulas

∥∥ f (x)|H̃µ
p
∥∥= {

∑
γ

∣∣ f̂ [γ]∣∣p µ
p(γH−1)

} 1
p

, 1≤ p < ∞, (3)

and ∥∥ f (x)|H̃µ
∞

∥∥= sup
γ

{ ∣∣ f̂ [γ]∣∣µ(γH−1)
}
, p = ∞.

Space H̃µ
p becomes isometrically isomorphic to space Lp and hence a complete Banach space.

In (3), the Fourier coefficients f̂ [γ] are calculated by the following formula

f̂ [γ] =< f (x),e2πiγH−1x >=
∫

Ω0

f (x)e2πiγH−1xdx,

where Ω0 is the basic parallelepiped for matrix H:

Ω0 =
{

x : x = Hy; 0≤ y j < 1, j = 1,n
}
.

In [9, 10], the asymptotic optimality of the cubature formula of rectangles over space H̃µ
p (Tn) was proved.

OPTIMAL CUBATURE FORMULA IN SPACE H̃µ
p (Tn)

In this paper, we prove that the cubature formula for rectangles

∫
Tn

f (x)dx≈ 1
N ∑

1≤λi≤N
f (hλi), (4)

is optimal among cubature formulas of the form∫
Tn

f (x)dx≈ ∑
1≤λi≤N

Cλi f (hλi) , i = 1,n, h =
1
N
, (5)

exact on constants over space H̃µ
p (Tn) , where

Tn = {x = (x1,x2,x3, . . . ,xn) : xk = {tk} , tk ∈ R} and {tk}= tk− [tk]
i.e. fractional part tk is called n -dimensional torus [1].
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Definition 3. Cubature formula∫
Tn

f (x)dx≈
N

∑
λ=1

Cλ f (hλ ), λ = (λ1,λ2,λ3, ...,λn ) (6)

where λi are integers, is called exact on some set M if (6) becomes an exact equality for f (x) ∈M.

In particular, when M = R, then
N
∑

λ=1
Cλ = 1.

Theorem 1. The cubature formula of rectangles (4) is optimal among cubature formulas of the form (6) exact at
constants over space H̃µ

p (Tn) .
To prove this theorem, we consider the following lemmas, proved by M.D. Ramazanov and G.N. Salikhov (see [9]).
Lemma 1. Properties over Banach space B̃ sup

f (x)∈B̃

‖ f (x)|C‖
‖ f (x)|B̃‖ < ∞ and

∥∥ f (x+a) |B̃
∥∥= ∥∥ f (x) |B̃

∥∥
i.e. the norm of the shift-invariant space B̃ for all f (x) ∈ B̃ and among all a ∈ Rn, one of the optimal error functionals
has the following form

`0,Q
h (x) = `

C0
h = εQ (x)−hnC0(h) ∑

kh∈Q
δ (x− kh) (7)

Note. We assume that nodes x(k) are chosen according to the rule x(k) = kh, where h > 0 is the parameter, tending to
zero, so that numbers 1

h remain integers, εQ (x) is the characteristic function of domain Q, δ (x) - is the Dirac delta
function.

For completeness, we present the proof of the lemma.
Proof. Let the optimal functional be given by the following formula

`0
h(x) = εQ (x)−hn

∑
kh∈Q

Ckδ (x− kh).

For any integer vector S under condition S j = 0,1, . . . ,h−1−1 (j = 1, . . . , n), functional
{
`s

h(x)
}

h∈H , defined by the
rule

< `s
h(x), f (x)>=< `0

h(x), f (x+ sh)>,

has a norm equal to the norm of functional
{
`0

h(x)
}

h∈H .{
`s

h(x)
}

h∈H is the error functional

`s
h(x) = εQ (x)−hn

∑
kh∈Q

Ck−sδ (x− kh) ,

where Ck are the coefficients of the optimal functional, initially given at points kh ∈ Q and periodically extended to
the entire space. So,

{
`s

h (x)
}

h∈H is also the optimal functional.

The arithmetic mean over all S of functionals
{
`s

h (x)
}

h∈H (denote it by
{
`0,Q

h (x)
}

h∈H
) is also an error functional.

It is evident that all coefficients Ck,0 of functional `0,Q
h (x) are equal to each other, Ck,0 = (const k) =C0, norm `0,Q

n (x)

does not exceed
∥∥`s

h(x)|B̃∗
∥∥= ∥∥`0

h (x) |B̃∗
∥∥, i.e.

{
`0,Q

h (x)
}

is also the optimal functional.
To understand the situation more clearly, we calculate the explicit form of the optimal functional (7), i.e., constant

C0 (h) for some specific spaces.
The following result for p = 2 was established by I. Babushka [11].
Lemma 2. Let µ (k) be a function of discrete argument k with a property for some P :(

∑
k

1
|µ (k)|p

)1/p

< ∞, at 1≤ p < ∞.

(
∑
k
|ak|p

)1/p

= sup
k
|ak| , at p = ∞.
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Then over space H̃µ
p the error functional (7) with

C0(h) =
1

1+

(
∑

k 6=0

∣∣∣ µ(0)
µ(k/h)

∣∣∣q)p/q ,
1
p
+

1
q
= 1 (8)

is optimal.
Proof. The space of all generalized functions of the following form is a conjugate space of H̃µ

p

`(x) = ∑
s
`se2πisx (9)

with finite norm

∥∥`(x)|H̃µ∗
p
∥∥= (∑

s

|`s|q

|µ (s)|q
)1/q

.

Each generalized function `(x) defines a functional on H̃µ
p according to the rule 〈`(x) , f (x)〉= ∑

s
`s(x) fs(x).

In particular, the error functionals (9) are also expanded in the Fourier series. By Lemma 1, one of the optimal
functionals can be written as

`0,Q
h (x) = εQ (x)−hnC0 ∑

kh∈Q
δ (x− kh).

The Fourier coefficients of a functional of this type are `0
0 = 1−C0, `

0
s =−C0 for s = r · 1

h (r is any integer vector),
and for the rest, S , `0

s = 0. For any choice of C0, the norm of this functional is:

g(C0) =

(
|1−C0|q

|µ (0)|q
+ ∑

s 6=0

|C0|q

|µ (s/h)|q

)1/q

, (10)

where C0 corresponding to the optimal functional, gives the minimum of function g(C0). From the last formula (10) it
is directly seen that the optimal functional C0 cannot be complex, and on the real axis it cannot be outside the segment
[0,1].
It remains to find the points of the minimum of g(C0) on the segment [0,1].

Consider the following function for 1≤ q < ∞

gq(C0) = (1−C0)
q 1
|µ(0)|q

+Cq
0 ∑

s 6=0

1
|µ (s/h)|q

.

It is continuously differentiable on [0,1], the point of the minimum is easily found and is given by the following
formula (8).

As q = ∞

g(C0) = sup
{
(1−C0)

1
|µ(0 )| ,C0

1
|µ( s

h )|
(∀S,Si = 0,±1,±2, ..., |S| 6= 0)

}
.

Let a = sup
|s|6=0

|µ(0 )|
|µ(s/h )| .

Then
g(C0) =

1
|µ(0 )| max{(1−C0),C0 ·a}

The minimum of the norm will be reached at 1−C0 =C0 ·a or C0 =
1

1+a , which coincides with formula (8).
Thus, we see that for spaces H̃µ

p 0 <C0(h)< 1, but C0(h) tends to 1 as h→ 0.
It turns out that these properties C0(h) are of a general nature (see [9]).

Proof of Theorem 1. It is known that the optimal cubature formula with coefficients
∑
λ

Cλ = 1 over space H̃µ
p (Tn) exists (see [9, 10])
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inf

∥∥∥∥∥∫Tn

f (x)dx− ∑
λ

Cλ f (hλ )|H̃µ
p

∥∥∥∥∥= c > 0

and the least value is reached on some system of numbers.
By Lemma 1, all coefficients Cλ are equal to each other and equal to 1

N . This implies that assertions of the theorem
are true.

Thus, the following theorem is true for the norm of the error functional of the cubature formula (6).
Theorem 2. The norm of the error functional of the cubature formula (6) over space H̃µ

p (Tn) is∥∥∥∥∥∫Tn

f (x)dx−
N
∑

λ=1

1
N f (hλ )|H̃µ

p

∥∥∥∥∥= inf
χ

{∫
Tn

∣∣∣∣∣ ∑
γ 6=0

e2πiγx

µ(hγ) +χ

∣∣∣∣∣
q

dx

} 1
q

at 1≤ q < ∞ and∥∥∥∥∥∫Tn

f (x)dx−
N
∑

λ=1

1
N f (hλ )|H̃µ

p

∥∥∥∥∥= inf
χ

vraisup
γ

∣∣∣∣∣ ∑
γ 6=0

e2πiγx

µ(hγ) +χ

∣∣∣∣∣
as q = ∞, which is what was required to be proved.

CONCLUSION

In studying various problems that arise in the theory of approximate integration and partial differential equations and
related branches of analysis, the so-called functional approach proved to be very productive.

The essence of this approach (if we confine ourselves to the example of a boundary value problem for a differential
equation) is that the differential equation with boundary conditions, is implemented as an operator acting in a specially
selected functional space; the required information is extracted from the properties of this operator.

S.L.Sobolev developed an algorithm for constructing cubature formulas, which he called formulas with a regular
boundary layer. He proved the asymptotic optimality of these formulas and estimated the upper bound of the norm of
the error functional in space Um

2 (Ω), with separation of the leading term. V.D.Charushnikov proved similar statements
for spaces Hµ

2 (Ω) and T.Kh.Sharipov established the validity of similar results for spaces Hµ
p (Ω). Ramazonov estab-

lished the optimality of the formula of rectangles for cubature formulas on a given lattice, set in one of the equivalent
normalizations over the space of periodic functions, compactly embedded in the space of continuous functions, and
with norm, invariant with respect to shifts of the function arguments. This paper is devoted to cubature formulas over
space H̃µ

p (Tn)). It was proved that the cubature formula of rectangles (4) is optimal among cubature formulas of the
form (6) and exact at constants over space H̃µ

p (Tn) .
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