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Abstract—The main result of this work are the construction of composite optimal quadrature
formulas in the Sobolev space of periodic functions. Here we find the optimal coefficients of the
composite quadrature formulas at t = 0, t = 1, t = 2 for any m ≥ 1. In addition, the norm of the
error functionals of the constructed optimal quadrature formulas are calculated, i.e. the norms
of optimal error functionals of composite quadrature formulas in the conjugate Sobolev space of
periodic functions are obtained.

DOI: 10.1134/S1995080224600195

Keywords and phrases: optimal formulas, the extremal function, Hilbert space, error func-
tional, optimal coefficients.

1. INTRODUCTION

The construction of optimal formulas for the approximate calculation of linear functionals of a
wider class of problems is an urgent problem in computational mathematics. A very characteristic
example here is the theory of formulas for approximate integration: quadrature and cubature formulas.
A compound quadrature formula is an approximate formula that expresses the value of the integral
∫ 1
0 ϕ(x)dx as a linear combination of the values of the integrand and its derivatives at points called

nodes
1∫

0

ϕ(x)dx ∼=
N∑

k=1

t∑

α=0

C
(α)
k ϕ(α)(xk), (1)

or
∞∫

−∞

ε[0,1](x)ϕ(x)dx ∼=
N∑

k=1

t∑

α=0

C
(α)
k ϕ(α)(xk),

where ε[0,1](x) is the indicator (the characteristic function) of the interval [0, 1], t ≤ m− 1. The points

xk are called nodes of the quadrature formula, and the numbers C
(α)
1 , C

(α)
2 , ..., C

(α)
N are called its

coefficients, ϕ(x) ∈ ˜

L
(m)
2 (0, 1).

Recall that a function f(x) is called 1-periodic if for any integer β ∈ Z and f(x) = f(x+ β) for all x.

We give the definition of the Sobolev space
˜

L
(m)
2 (0, 1) of 1-periodic functions.

*E-mail: kholmatshadimetov@mail.ru
**E-mail: nilufar.mamatova.76@mail.ru

839



840 SHADIMETOV, MAMATOVA

The space
˜

L
(m)
2 (0, 1) is the Hilbert space of 1-periodic functions f(x),−∞ < x < ∞, that are square

integrable with mth order derivative (in generalized sense), equipped with the inner product

(f, g) =

1∫

0

dmf

dxm
dmg

dxm
dx.

The norm in the space
˜

L
(m)
2 (0, 1) is defined by the formula

||ϕ|˜L(m)
2 ||2 = (ϕ,ϕ) = ||ϕ|˜L(m)

2 ||2 =
1∫

0

(
dm

dxm
ϕ(x)

)2

dx.

The error of the quadrature formula is the difference

(�, ϕ) =

∞∫

−∞

�(x)ϕ(x)dx =

1∫

0

ϕ(x)dx −
N∑

k=1

t∑

α=0

C
(α)
k ϕ(α)(xk) (2)

where δ(x) is the Dirac delta-function, φ0(x) =
∑

β

δ(x − β),

�(x) =

(

ε[0,1](x)−
N∑

k=1

t∑

α=0

C
(α)
k (−1)αδ(α)(x− xk)

)

∗ φ0(x). (3)

Equality (2) is defined on functions ϕ(x) by an additive and homogeneous periodic functional �, which
is called the error functional of the quadrature formula (1). In the periodic case, the error functional of

quadrature formulas is determined by formula (3). The conjugate space
˜

L
(m)∗
2 (0, 1) consist of all periodic

functionals that are orthogonal to unity

(�, 1) = 0. (4)

Due to the fact that any periodic polynomial is constant. This condition does not depend on m.

The condition (4) can be expressed as
N∑

k=1

C
(0)
k = 1. (5)

The unknown parameters of the quadrature formula (1) are nodes xk and coefficients C
(0)
k ,

C
(1)
k , ..., C

(t)
k , k = 1, 2, ..., N.

An optimal quadrature formula is the formula which has the minimum error for a given number N of
nodes, i.e., the norm of the error functional for the optimal quadrature formula has the smallest value in

the space
˜

L
(m)∗
2 (0, 1) of periodic functions.

In this paper, the results of the numerical integration of periodic functions obtained by functional
analysis methods from [1–4] are generalized to the case of composite quadrature formulas. The work [5]
is devoted to weighted non-standard quadrature formulas of Gaussian type, based on the values of some
linear differential operators at some nodes.

There are several methods for constructing optimal quadrature formulas in the sense of Sard, for
example, the spline method [6–8], the φ-function method (see, for example, [9–14]) and the Sobolev
method [1–4]. In different spaces, based on these methods, the Sard problem has been studied by many
authors (see, for example, [15–19] and the references therein).

The spline method: Schoenberg [20] showed the connection between optimal quadrature formulas in
the sense of Sard and natural splines.
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The main results of this work are the construction of composite optimal quadrature formulas of the

form (1) in the Sobolev space
˜

L
(m)
2 (0, 1). Here we explicitly find the optimal coefficients of the composite

quadrature formulas t = 0, t = 1, t = 2 for any m ≥ 1. In addition, the norms of the error functionals of
the constructed optimal quadrature formulas are calculated, i.e., the norms of optimal error functionals

of composite quadrature formulas are found in the conjugate space
˜

L
(m)∗
2 (0, 1). Similar issues are

considered in [21–24].

2. MINIMIZATION OF THE NORM OF THE ERROR FUNCTIONAL FOR COMPOSITE
QUADRATURE FORMULAS

A composite quadrature formula with an error functional �(x) defined by formula (3), considered on

the Sobolev space
˜

L
(m)
2 (0, 1), can be characterized in two ways.

On the one hand, it is determined by coefficients C
(α)
k , k = 1, 2, ..., N ; α = 0, 1, ..., t, subject to the

condition (�(x), 1) = 0, and, on the other hand, an extremal function ψ�(x) of a quadrature formula with
derivatives, which is obtained as a solution to the equation

d2mψ�(x)

dx2m
= (−1)m�(x), (6)

and can be written as

ψ�(x) = −
N∑

k=1

t∑

α=0

C
(α)
k iα

∑

β �=0

e2πiβ(x−xk)

(2πβ)2m−α
+ d0. (7)

The norm of the error functional �(x) for the quadrature formula with derivatives of the form (1) is
expressed as a bilinear form of the coefficients of this quadrature formula and the values of the extremal
function specified by formula (7).

Indeed, since the space
˜

L
(m)
2 (0, 1) is a Hilbert space, the norm of the error functional �(x) and the

extremal function ψ�(x) are related by the relation

||�|˜L(m)∗
2 (0, 1)||2 =

1∫

0

(
dmψ�

dxm

)2

dx = (−1)m
1∫

0

(
d2mψ�

dx2m

)2

ψ�(x)dx,

where ψ�(x) is the extremal function of the quadrature formula with derivatives.

However, d2mψ�(x)
dx2m = (−1)m�(x), that means

||�|˜L(m)∗
2 (0, 1)||2 = (�, ψ�) =

1∫

0

�(x)ψ�(x)dx. (8)

Now, using formulas (3) and (7), we calculate the norm of the error functional for the quadrature formula
using (8)

||�|˜L(m)∗
2 (0, 1)||2 = (�, ψ�) =

1∫

0

�(x)ψ�(x)dx

=

1∫

0

((

ε[0,1](x)−
N∑

k′=1

t∑

α′=0

C
(α′)
k′ (−1)α

′
δ(α

′)(x− xk′)

)

∗ φ0(x)

)

×

⎛

⎝−
N∑

k=1

t∑

α=0

C
(α)
k iα

∑

β �=0

e2πiβ(x−xk)

(2πβ)2m−α
+ d0

⎞

⎠ dx. (9)
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842 SHADIMETOV, MAMATOVA

Taking into account condition (4) the integral (9) is calculated over the interval [0, 1] and the nodes xk
belong to the interval [0, 1], then (9) takes the following form

||�|˜L(m)∗
2 (0, 1)||2 =

1∫

0

(

ε[0,1](x)−
N∑

k′=1

t∑

α′=0

C
(α′)
k′ (−1)α

′
δ(α

′)(x− xk′)

)

×
(

−
N∑

k=1

t∑

α=0

C
(α)
k iα

∑

β �=0

e2πiβ(x−xk)

(2πβ)2m−α

)

dx.

It is easy to see that the integral of the function e2πiβ(x−xk) on the interval [0, 1] is zero, i.e.,

1∫

0

e2πiβ(x−xk)dx = 0, for β = ±1,±2, .... (10)

By virtue of (10), we reduce the norm of the error functional to the form

||�|˜L(m)∗
2 (0, 1)||2 =

1∫

0

(
N∑

k′=1

t∑

α′=0

C
(α′)
k′ (−1)α

′
δ(α

′)(x− xk′)

)

×

⎛

⎝
N∑

k=1

t∑

α=0

C
(α)
k iα

∑

β �=0

e2πiβ(x−xk)

(2πβ)2m−α

⎞

⎠ dx. (11)

Using properties of δ function, we have
1∫

0

δ(α
′)(x− xk′)e2πiβ(x−xk)dx = (−1)α

′
(2πiβ)α

′
e2πiβ(xk′−xk).

Then, (11) takes the form

||�|˜L(m)∗
2 (0, 1)||2 =

N∑

k′=1

t∑

α′=1

C
(α′)
k′

N∑

k=1

t∑

α=1

C
(α)
k iα+α′ ∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′

=
N∑

k′=1

t∑

α′=1

N∑

k=1

t∑

α=1

C
(α′)
k′ C

(α)
k iα+α′ ∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ .

So we have proved the following theorem.

Theorem 1. The norm of the error functional (3) for the composite quadrature formula with

derivatives in the space
˜

L
(m)∗
2 (0, 1) is expressed as

||�|˜L(m)∗
2 (0, 1)||2 =

N∑

k′=1

t∑

α′=1

N∑

k=1

t∑

α=1

C
(α′)
k′ C

(α)
k iα+α′ ∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ . (12)

3. FINDING THE MINIMUM VALUE OF THE NORM OF THE ERROR FUNCTIONAL
FOR THE COMPOSITE QUADRATURE FORMULAS

To find the minimum of the norm (12), we apply the Lagrange method of undetermined multipliers.
To do this, we consider the Lagrange function

Ψ(C(α), λ) = ||�|˜L(m)∗
2 (0, 1)||2 + 2λ(�, 1).
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Using formulas (5) and (12), we reduce the Lagrange function to the form

Ψ(C(α), λ) =

N∑

k′=1

t∑

α′=1

N∑

k=1

t∑

α=1

C
(α′)
k′ C

(α)
k iα+α′ ∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ + 2λ

(
N∑

k=1

C
(0)
k − 1

)

.

All partial derivatives with respect to C
(α)
k and λ, k = 1, 2, ..., N ; α = 0, 1, 2, ..., t, of the function

Ψ(C(α), λ) equation to zero, we have

∂Ψ(C(α), λ)

∂C
(α)
k

= 0, k = 1, 2, ..., N, α = 0, 1, ..., t,
∂Ψ(C(α), λ)

∂λ
= 0.

This gives a system of equations
N∑

k′=1

t∑

α′=0

C
(α′)
k′ iα

′+α
∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ + δ[α]λ = 0, (13)

at k = 1, 2, ..., N, α = 0, 1, ..., t,

N∑

k′=1

C
(0)
k′ = 1 (14)

Here C(α′)
k′ are the coefficients of composite quadrature formulas with derivatives, λ is a certain constant,

δ[α] is is defined as follows

δ[α] =

{
1 for α = 0,

0 for α �= 0.

We denote the solution to system (13) and (14) by C̊
(α)
k , λ̊, which represents a stationary point for the

Lagrange function Ψ(C(α), λ). Then, we rewrite the system (13) and (14) in the form
N∑

k′=1

t∑

α′=0

C̊
(α′)
k′ iα

′+α
∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ + δ[α]̊λ = 0, (15)

k = 1, 2, ..., N, α = 0, 1, ..., t,

N∑

k′=1

C̊
(0)
k′ = 1. (16)

We introduce the denotation

B2m(x) =
∑

β �=0

e2πiβx

(2πβ)2m
,

then

B2m(xk′ − xk) =
∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m
, B2m−α′−α(x) = iα+α′ ∑

β �=0

e2πiβx

(2πβ)2m−α−α′ .

With this notation, we rewrite the system (15) and (16) in the form
N∑

k′=1

t∑

α′=0

C̊
(α′)
k′ B2m−α−α′(xk′ − xk) + δ[α]̊λ = 0, (17)

at k = 1, 2, ..., N, α = 0, 1, ..., t,

N∑

k′=1

C̊
(0)
k′ = 1. (18)
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From the theory of the Lagrange method of undetermined multipliers it follows that C̊
(α)
k , k =

1, 2, ..., N, α = 0, 1, ..., t are the desired values of the optimal coefficients of the quadrature formula (1)

with derivatives in the space
˜

L
(m)
2 (0, 1) and they give a conditional minimum to the norm of the error

functional for the quadrature formula, subject to the condition (5).
The following holds.

Theorem 2. Let the error functional � be defined on the Sobolev space
˜

L
(m)
2 (0, 1), i.e., its value

for a constant is zero, and be optimal, i.e., among all functionals of the form (3) with a given

system of nodes xk it has the smallest norm in the conjugate space
˜

L
(m)∗
2 (0, 1). Then, there is

a solution ψ�(x) to equation (6) from the space
˜

L
(m)
2 (0, 1) which the values of its derivatives of

order α at the nodes xk are equal to zero.
Proof. Let us now consider formula (7) for the general solution of equation (6). Let us choose a

constant in it d0 = −λ̊, where λ̊ is the value of the Lagrange multiplier we found. With this choice, for
the function values ψ�(x) at points xk we have

ψ
(α)
� (xk) = −

N∑

k′=1

t∑

α′=0

C̊
(α′)
k′ iα

′+α
∑

β �=0

e2πiβ(xk′−xk)

(2πβ)2m−α−α′ − δ[α]̊λ.

By virtue of equations (15) and (16), we see that ψ(α)
� (xk) = 0 for k = 1, 2, ..., N and α = 0, 1, 2, ..., t.

This proves Theorem 2. �

4. OPTIMAL COMPOSITE QUADRATURE FORMULAS

IN THE SOBOLEV SPACE
˜

L
(m)
2 (0, 1)

Let xk = hk, hk ∈ [0, 1], k = 1, 2, ..., N, h = 1
N , N = 1, 2, .... In addition, coefficients C̊

(α)
k =

C̊(α)[k].

In this section we prove that all coefficients C(α)[k] = C(α), i.e., they do not depend on k. Then, we
explicitly find the optimal coefficients C̊(α)[k], for α = 0, 1, 2, ..., t, k = 1, 2, ..., N.

In this case system (17) and (18) takes the form
N∑

k′=1

t∑

α′=0

C̊(α′)[k′]B2m−α−α′ [k′ − k] + δ[α]̊λ = 0, (19)

for k = 1, 2, ..., N, α = 0, 1, ..., t,

N∑

k′=1

C̊(0)[k′] = 1, (20)

here [k] = hk, δ[α] =

{
1 for α = 0,

0 for α �= 0.
We write the system of equations (19) and (20) in the form of

convolution equations
t∑

α′=0

B2m−α−α′ [k] ∗
(
ε[0,1][β] C̊

(α)[k]
)
+ δ[α]̊λ = 0, (21)

for α = 0, 1, ..., t, [k] = hk ∈ [0, 1].

N∑

k′=1

C̊(0)[k′] = 1. (22)
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Here ε[0,1][β] =

{
1 for [β] = hβ ∈ [0, 1],

0 for [β] �∈ [0, 1].
The following is true.

Theorem 3. Optimal coefficients C̊(α)[k], k = 1, 2, ..., N, α = 0, 1, 2, ..., t of the lattice quadra-
ture formulas with derivatives does not depend on k, i.e., all coefficients are constants C̊(0)[k] =

C̊(0), C̊(1)[k] = C̊(1), ..., C̊(t)[k] = C̊(t), where C̊(0), C̊(1), ..., C̊(t) are constant numbers.
Here we provide the proof of this theorem for t = 0, 1, 2.
Proof. To do this, we use the following known results from [25–27]

(−1)mhD(m)[β] ∗B2m[β] = φ[β]− h, (23)

D(m)[β] ∗ [β]n = 0, for n ≤ 2m− 1, (24)

where D(m)[β] is the discrete analogue of the differential operator d2m

dx2m ,

B2m[β] =
∑

γ �=0

e2πiβhγ

|2πγ|2m , Φ[β] =
∑

γ

δ[β − h−1γ], (25)

[β] = hβ, h−1 = N is a natural number, δ[β − h−1γ] is the discrete delta-function

δ[β − h−1γ] =

{
1, [β − h−1γ] = 0,

0, [β − h−1γ] �= 0,
(26)

β ∈ Z. It is known that if g[β] = g(hβ) is a 1-periodic discrete argument function, i.e., g(hβ + γ), γ ∈ Z,
then the following equality holds

g[β] =
(
g[β]ε[0,1][β]

)
∗ Φ[β], ε[0,1][β] =

{
1 for [β] = hβ ∈ [0, 1],

0 for [β] �∈ [0, 1].
(27)

Since the system (21) is the convolutional form of system (15), therefore, in the proof we use these two
types of systems.

Let’s move on to the proof of the theorem. To do this, we first consider the system (21) and (22) for
t = 0. In this case, the system has the form

B2m[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+ λ̊ = 0, (28)

N∑

k′=1

C̊(0)[k′] = 1. (29)

Applying the operator hD(m)[k] to both sides of equation (28), we obtain

hD(m)[k] ∗
(
B2m[k] ∗

(
C̊(0)[k]ε[0,1][k]

)
+ λ̊

)
= 0, for [k] ∈ [0, 1].

From here, using formulas (23), (24), and (27), we obtain

C̊(0)[k] = h
N∑

k′=1

C̊(0)[k′] = 0, [k] ∈ [0, 1], k = 1, 2, ..., N.

By virtue of (29), we finally have

C̊(0)[k] = h, for k = 1, 2, ..., N. (30)

So, when t = 0, then the theorem is proven, i.e., the optimal coefficients in this case do not depend on k,
C̊(0)[k] = C̊(0) = h.

Now we move on to finding unknown constant λ̊ for t = 0. From (28) we get

λ̊ = −B2m[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
.
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It is known that from (15)

λ̊ = −
N∑

k′=1

∑

β �=0

e2πiβ(k
′h−kh)

(2πβ)2m
= −h

∑

β �=0

1

(2πβ)2m

N∑

k′=1

e2πiβh(k
′−k).

However,
N∑

k′=1

e−2πiβhke2πiβhk
′
= e−2πiβhk

N∑

k′=1

e2πiβhk
′
=

{
N for hβ ∈ Z,

0 for hβ �∈ Z.

From here, instead of β substituting βh−1, we get

λ̊ = −
∑

β �=0

h2m

(2πβ)2m
. (31)

So we have found a solution to system (28) and (29), i.e., the solution of this system is determined by
formula (30) and (31).

Let t = 1, then the system (21) and (22) takes the form

B2m[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+B2m−1[k] ∗

(
C̊(1)[k]ε[0,1][k]

)
+ λ̊ = 0, (32)

B2m−1[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+B2m−2[k] ∗

(
C̊(1)[k]ε[0,1][k]

)
= 0, (33)

N∑

k′=1

C̊(0)[k′] = 1. (34)

In this case, for xk = kh the system (15) and (16) takes the form

N∑

k′=1

C̊
(0)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m
+ i

N∑

k′=1

C̊
(1)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−1
+ λ̊ = 0, (35)

i

N∑

k′=1

C̊
(0)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−1
−

N∑

k′=1

C̊
(1)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−2
= 0, (36)

N∑

k′=1

C̊(0)[k′] = 1. (37)

So, C̊(0)
k′ = h, then it is obvious that

N∑

k′=1

h
∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−1
=

∑

β �=0

h2m−1

(2πβ)2m−1
= 0.

Due to the above, equality (36) takes the form

N∑

k′=1

C̊
(1)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−2
= 0. (38)

It follows from (33) that

B2m−2[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
= 0. (39)
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Hence, applying the operator hD(m−1)[k] to both sides of equation (38), we have

C̊(1)[k]− h

N∑

k′=1

C̊(1)[k′] = 0.

It follows from this that C̊(1)[k] does not depend on k, i.e., C̊(1)[k] = C̊(1). Then, equation (38) takes the
form

N∑

k′=1

C̊
(1)
k′

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−2
= C̊(1)

N∑

k′=1

∑

β �=0

e2πiβh(k
′−k)

(2πβ)2m−2
= C̊(1)

∑

β �=0

h2m−3

(2πβ)2m−2
.

On the other hand, by virtue of (38)

C̊(1)
∑

β �=0

h2m−3

(2πβ)2m−2
= 0,

from here it immediately follows that C̊(1) = C̊(1)[k] = 0 at k = 1, 2, ..., N .

From (35) it follows that λ̊ = −
∑

β �=0

h2m

(2πβ)2m
. So the solution to system (32), (33), an (34) is

determined by the formulas

C̊(0) = h, C̊(1) = 0, λ = −
∑

β �=0

h2m

(2πβ)2m
.

Let t = 2, then the system (21) and (22) has the form

B2m[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+B2m−1[k] ∗

(
C̊(1)[k]ε[0,1][k]

)

+B2m−2[k] ∗
(
C̊(2)[k]ε[0,1][k]

)
+ λ̊ = 0, (40)

B2m−1[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+B2m−2[k] ∗

(
C̊(1)[k]ε[0,1][k]

)

+B2m−3[k] ∗
(
C̊(2)[k]ε[0,1][k]

)
= 0, (41)

B2m−2[k] ∗
(
C̊(0)[k]ε[0,1][k]

)
+B2m−3[k] ∗

(
C̊(1)[k]ε[0,1][k]

)

+B2m−4[k] ∗
(
C̊(2)[k]ε[0,1][k]

)
= 0, (42)

N∑

k′=1

C̊(0)[k′] = 1.

To find the unknowns, C̊(2)[k] consider equations (42) as C̊(0)[k] = h, C̊(1)[k] = 0 at k = 1, 2, ..., N ,
then this equation takes the form

B2m−4[k] ∗
(
C̊(2)[k]ε[0,1][k]

)
= −

∑

β �=0

h2m−2

(2πβ)2m−2
. (43)

Applying the operator hD(m−2)[k] to both sides of equation (43) and taking into account (23) and (24),
we obtain

C̊(2)[k]− h

N∑

k′=1

C̊(2)[k′] = 0. (44)

It immediately follows that C̊(2)[k] = C̊(2), k = 1, 2, ..., N.
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From (15) and (43) we have

−C̊(2)
∑

β �=0

h2m−5

(2πβ)2m−4
= −

∑

β �=0

h2m−2

(2πβ)2m−2
.

From here

C̊(2)[k] = C̊(2) = h3
B2m−2

B2m−4
, k = 1, 2, ..., N.

Substituting the obtained coefficients

C̊(2)[k] = h, C̊(1)[k] = 0, C̊(2)[k] = h3
B2m−2

B2m−4
, (45)

to (40) and using (15) in the case α = 0, we find

λ̊ = h2m
∑

β �=0

(
1

(2πβ)2m−2
− 1

(2πβ)2m

)

.

It is easy to see that coefficients (45) also satisfy equations (41).

So we have proven the following theorems.

Theorem 4. Among quadrature formulas of the form (1) for t = 0 and t = 1 the following

quadrature formula is optimal in the space
˜

L
(m)
2 (0, 1) for any m ≥ 1

1∫

0

ϕ(x)dx ∼= h

N∑

β=0

ϕ(hβ). (46)

Theorem 5. Among the quadrature formulas of the form (1) with t = 2 the following
quadrature formula

1∫

0

ϕ(x)dx ∼= h

N∑

β=0

ϕ(hβ) + h3
B2m−2

B2m−4

N∑

β=0

ϕ′′(hβ), (47)

is optimal in the space
˜

L
(m)
2 (0, 1) for any m ≥ 1.

5. NORM OF THE ERROR FUNCTIONAL
FOR COMPOSITE OPTIMAL QUADRATURE FORMULAS

The following theorems are true.

Theorem 6. The norm of the error functional for optimal quadrature formulas of the form (1)
at t = 0, 1 has the form

||̊�|˜L(m)∗
2 (0, 1)||2 =

h2m|B2m|
(2m)!

.

Theorem 7. The norm of the error functional for composite quadrature formulas of the form
(1) at t = 2 has the form

||̊�|˜L(m)∗
2 (0, 1)||2 =

h2m

(2m)!

(

|B2m| − |B2m−2|2
|B2m−4|

(2m− 1)2m

(2m− 2)(2m − 3)

)

.

The proofs of these theorems follow from Theorems 1, 4, and 5.
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6. CONCLUSIONS

Thus, this work is devoted to the construction of composite optimal quadrature formulas of the

form (1) in the Sobolev space
˜

L
(m)
2 (0, 1). Here we obtained the following main results:

—To obtain an upper bound for composite quadrature formulas in the Sobolev space of periodic
functions, we found an extremal function of the form (7);

—The expression for the norm of the error functional (3) was obtained analytically;
—The optimal coefficients of composite quadrature formulas are found for t = 0, t = 1 and t = 2 for

any m ≥ 1;
—The norm of optimal error functionals for composite quadrature formulas at t = 0, t = 1 and t = 2

for any m ≥ 1 are calculated.
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