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Abstract. The paper is devoted to investigation of optimal formulas for approximate integration with derivatives in the Sobolev

space L(zm) (0,1) of periodic functions. Here the extremal function for quadrature formulas of Hermite type is obtained. Applying
this extremal function the square of the norm for the error functional of the considered Hermite type quadrature formulas is
calculated. It is obtained the system of linear algebraic equations minimizing the norm of the error functional by coefficients of
the quadrature formulas. Furthermore, here, Ivo Babuska’s theorem on zeros of extremal functions for quadrature formulas is
generalized.

1. INTRODUCTION

In this paper, the results of integration of periodic functions from [1, 2, 3] are generalized to the case of quadrature
formulas that are analogs of Hermite’s quadrature formulas.

Recall that, a function f(x) is called periodic if f(x) = f(x+ B) fulfills for any integer 8 € Z and all x. We give the
definitions of the Sobolev space Lgm) (0, 1) of periodic functions.

L;m) (0,1), m > 1 is the Hilbert space of periodic functions f(x), —eo < x < oo, differing by a constant, m derivative
(in the generalized sense) is square integrable. In this space the inner product is defined as

1
o [
0

The norm in the space Lgm) (0,1) corresponding to the inner product has the form

prIL "2 = (9,9)

or

1

Iols12= [ (9 ()’ ax.
0

Let ¢ from the space Lgm) (0,1). Integral by segment of the function ¢, we going to approximately replace by linear

combination of the values of ¢ and its derivatives ¢(%) (x) at the nodes x; € [0,1], k=1,2,....N, N>mand N is a
integer number.
Throughout what follows, by a quadrature formula with a derivatives we mean the following approximate equality

N
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or

= N 1
/8[0,1]()6)‘P(X)dch Y ¥ C;Ea)(PW)(xk%
e k=10=0
where g ;)(x) is the indicator of the interval [0,1], # < m — 1. Here x; are the nodes and CEOO,CSZ), ...,C}Va) are the
coefficients of the quadrature formula.
The error of the quadrature formula is the difference
! N
(t.9) = [owar— Y ¥ V0@ w) @
0 k=1a=0
< N 1 (@)
= [ [ (00t~ L X 09800 ) vt oty
o k=10=0
where 0(x) is the Dirac delta-function, ¢o(x) = f S(x—p),
'[j’:foo
N
()= [ gon@ - Y ¥ (=16 (x—xp) | = go(). 3)
k=10=0

The equality (2) defines on functions ¢ additive and homogeneous periodic functional ¢ which is called the error
functional of quadrature formulas (1). In the periodic case the error functional of quadrature formulas is defined by

the formula (3). The conjugate space Lgm)*(O, 1) consists of all periodic functionals that are orthogonal to one, i.e.

(t.1)=0 @)

Since any periodic algebraic polynomial is a constant. This condition does not depend on m. The orthogonality
condition for ¢(x) with one yields the equality

al 0
Yy c¥=1 ®)

which we will always consider fulfilled.

The unknown parameters of the quadrature formulas (1) are the nodes x; and the coefficients C,EO) , C,El), ...,C,EI), k=
1,2,...,N.

A formula for the error of which for a given number of nodes N is the smallest norm in the space L£m>*(0, 1) of
periodic functionals is called an optimal quadrature formula.

The main results of this work are: Finding the extremal function of a Hermite type quadrature formula, computation
the norm of the error functional for the Hermite-type quadrature formula, obtaining a system of algebraic equations
for finding the optimal coefficient of quadrature formulas. Proof of general from of a theorem I.Babuska. Similar
issues are considered in works (see [4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
270)

2. EXTREMAL FUNCTION OF THE HERMITE-TYPE QUADRATURE FORMULA

Thus, we consider the problem of constructing quadrature formulas with derivatives in statement of functional, then

to find explicit form for the norm of the error functional ¢(x) in the Sobolev space Lg’") (0, 1), we will use the notation

of an extremal function of this functional introduced by Sobolev [1].
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Definition 1. Function y(x) from the space L£m> (0,1) is called the extremal function of the given error functional
L(x), if the following holds

—

1 —
(toye) = [ ey = 1ALyl ")
0

It is known, that by definition the space Lg )(O, 1) is a Hilbert space, the inner product in it is given by the formula

1
(0¥ = [ 9" Y ()a. ©
0

By the Riesz theorem, our functional £(x) is represented the as follows

(60) = (W, @)m
for any ¢(x) from Lgm) (0,1). Here y;(x) from Lg’o (0, 1) is uniquely defined by the functional ¢(x) and it is an extremal
for it.
Besides, yy(x) is a Riesz element and satisfies the equality

HEIL (0,0 = yelLs" 0, 1)

The function y;(x) can be expressed in terms of £(x) by solving some differential equation. Really, integrating by
parts the expression on the right-hand side of the formula (6) and using the periodicity of functions ¢(x) and y(x),
after some simplifications, we obtain

2m X
o) =1 [ E D gar

dx2m

This immediately implies that the function yy(x) is a generalized solution of the equation

d?"yy(x)

FrTE (=1)"e(x). (7

Now we find an explicit expression for the extremal function of the error functional £(x) defined by the formula
3). This will allow us to calculate the norm of the error functional ¢(x) in the conjugate space Lém)*(O, 1), ie.

1€ IL “(0,1)]-
The following is true.

Theorem 1. The extremal function of the error functional {(x) defined by formula (3) in the space Lgm) (0,1) is all
solutions of equation (7) are expressed in the form

eZm’ﬁ (x—2xg)

N t
(@) -\ O
— C (= ————— +dp. 8
R P T ®

Here C,ia) are coefficients of the quadrature formula in the form (1), dy is some constant, i> = —1.
Proof. We find periodic solution of equation (7). For this, we use the following known formulas of the Fourier
transform [1]
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F[1(x)] = é(p),

Fl¢o(x)] = ¢o(p),

[ n:n (2mip) ’",
'Flop(x)] = FF ' [p(x)] = ¢(x),

F[a( >(x—xk)} = / 2PE () (x — ) dx = (—1)*(2mip) *2mP,

Using the formula (3) the equation (7) is reduced to the form

d2m N t
dx2m ve(x) = (-1 lg[o X Z Z aCk D) (x xk)] * o (x). ©)
Applying the Fourier transform to both sides (9), we obtain
dZm N t
F [dxzm w(x)} = (_1)mF[ €o.1] (x Z Z (@) (x —xz) *(])O(x)]. (10)

In the formula (10), since the Fourier transform is a linear we apply the Fourier transform to each term separately.
Using the Fourier transform of the derivatives, we have

|: d2m

F | s (0| = Caip " Ly (an

Calculating the convolution and using the fundamentalness of the region Qy = [0, 1], we obtain

SQO 2801 =1.

From this it is easy to see that

F [0, (x) * 9o (x)] = 8(p). (12)

Now we calculate the Fourier transform of the convolution in (10) with oc =0

zck (x—x) #o(x) | = Y COF[8(x — )| ()]

=
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(O)eQJTpxk Zs(p o ﬁ Z C 271'1pr6 Z éIEO)EZEipxk Z 5(x—p).
B k=1

k B#0

1

Using the property of the delta function, we have

TIPS (p) = 8(p)

and the formula (5), we have

¢S (p) = 8(p)-

™=

»
Il

Then

M=

OIEO)S(x—xk)*d)o(x)] —8(p)+ Y COm Y §(x—p). (13)

F l
k B#0

Now we proceed calculation of the following Fourier transform of convolution in (10) for 1 < o <t.
Since the Fourier transform is a linear, we obtain

™=

1

MN

CLYF18' (x =) F [0 ()]

~
Il
Q
H

k=1o

ii D (x—x) ] i

t
ZCOC 27'L'lp Ot 2mpxk25 p B)

a=1

M=

N t
=Y Y (-1 G (1) (2mip) e gy (p) =

k=1a=1 k

N t
_ Z Z C(x < 27'Clp oc 271?lpxk5( ) (zﬂ:ip)tern'ipxk Z 5(17_[3)) i
B#0

Since (27ip)*e*™P*§(p) = 0, for @ > 1 we have

I

By virtue of (11), (12), (13) and (14) the formula (10 ) takes the following form

I Mz

t N t
Z ) (x — x¢) ] Z Z \(27ip)*™ P Y §(p—B). (14)

f70

(2mip)*"F [y (x)]

N N
= (-1 l6<p>6<p> Y. G X 8- p) - Y Y. G Crin) e Y 8- )
k=1 p#0 i=1a=1 p70

m+l

||M2

t
Z (2mip)®e*™ P Y §(p—P). (15)
a=1 B#0

This shows that the right-hand side of (15) is equal to zero in the vicinity of the origin.
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Therefore, we can divide both sides of (15) by (27ip)>".
This division will be ambiguous, [1] the function F[yy(x)] is determined from equation (15) up to a term of the
form

2m—1
dod(p Z dgD®

i.e. a linear combination of §(p) and D® (p). However, the function F[y;(x)] must be harrow-shaped, then all terms
except dpd(p) must be omitted. From here we get

F[W/( _ m+l Z ZC 27'Clp Ot 2mpxk Z P ﬁ) + 05( ) (16)
70 (2mip)™
It is not difficult to see that
B) ava2mipy 0P —B)
amipyeerion Yy OP=B) _ y~ o gya onipy 0P —B) (17)
( ) [§’0 (2mip)2m [327&:0( B) (2mif)2m

By virtue of (17) equality (16) takes the form

N t o 27i OteZn'iﬁxk6 o
_k;O;OC]E >ﬁ§’0( mip) (271:[3)2m(p B) L ad(p).

Hence, applying the inverse Fourier transform, we get

N ot o 27iB) —27if (x—xy)
wm=Y Y vy (27ip)"e +do. (18)

=1a=0 B0 (2mp)>m

If in (18) we substitute —f3 instead of 3, then the value of y;(x) does not change, then we have

2 B(x—xz)

N
I NEICEDY (2rpya T

k=10a=0 B#0

which shows the validity of Theorem 1.
Now calculating the derivatives of yy(x) with respect to x we have

N t 271'1[3 (x—x¢)
wé(x)=—ZZC15a QHZ (2nB)zm—o-1’
f=1a=0 jz0 27B)
V// i i (@) - Z 27rlB(x X))
(4 (x) =— G (x i P )
k=1a=0 f70 27B) (2mp)2m—a-2
or
N 27rtﬁ(x Xz)
(@) — (06 _
v, (x)ffkg’lazztgck ) OH-qu’O (rpya g=1,2,....t.

Here the series converges for 2m —2¢t > 1, orm—t > % Hence, in our case, t =0,1,...,m— 1.
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3. THE NORM OF THE ERROR FUNCTIONAL FOR QUADRATURE FORMULAS
WITH DERIVATIVES

The Hermite-type quadrature formulas with the error functional ¢(x) defined by the formula (3), considered on the

Sobolev space Lgm) (0, 1), can be characterized in two ways

In one side, it is determined by the coefficients C,ia), k=1,2,..,N; a=0,1,....7, subject to conditions

(£(x), 1) =0,

but on the other side, the extremal function y;(x) of the quadrature formula with derivatives, which is obtained as a
solution to the equation

d*"yy (x)
SRS = (1)
and can be written as
N t 271'1[3()( Xp)
() o
— C (-1 +dp. (19)

The norm of the error functional ¢(x) of the quadrature formula with derivatives of the form (1) is expressed in
terms of the bilinear form of the coefficients of this quadrature formula and the values of the extremal function given
by the formula (19)

In fact, since the space Lgm) (0,1) is a Hilbert space, the square of the norm of the error functional ¢(x) and the
extremal function y;(x) are related by the relation

dx™m d_x2m

m 2 L 2m
0y 0,1 = /(d ) = o [ S
0 0

where W( ) is the extremal function of the quadrature formula with derivatives of the form (1).

But £ dx";frf 1) (—1)"™¢(x), and hence

1
0L 0.0 = (L) = [ ewics 20)
0

Hence, using formulas (3), (19), we calculate the square of the norm of the error functional for the quadrature
formula

1

47011 = (4w = [ (owax

(=}

( )PP ICRIEICY pcam ) @n
X - —l 7}'}17—’_(10 d.x
== p70 (2mpy=e
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Taking into account the condition (4), the integral (21) is calculated over the segment [0, 1] and the nodes x; belong
to the segment [0, 1], then (21) takes the following form

' N i ) o
||£|L (0,1 = /(3[0,1]()6)— Y ) C,ila)(—l)a 3(a>(x_xk’)>

0

N @, ~a eZm'ﬁ(x—xk)
X(Z PCCIEDY (znﬁ)Zma)d‘x'

k=10a=0 B#0

It is not difficult to see that the integral of the function e2mip ("_"U, i.e.

1
/ezmﬁ(xka)dx =0, ﬁ =+1,42,.... (22)
0

By virtue of (22), the square of the norm of the error functional is reduced to the form

PN
m/mn2/<2 QWAWWwﬁ@

0 K'=10o'=0
N 27if (x—x )
(@) ~a €
<1<Z1 a;o ‘ ,3;) (2mp)>m—«

Using the property of §-function, we have

1
/5(&’)(x_xk/)62ﬂiﬁ(x7xk)dx _ (—l)al(Zﬂiﬁ)al€2mﬁ<x"/7xk).
0

Then equality (23) takes the form

m 5 N t (o) N t (a a a+a 2mﬁ(xk/—xk)
s oniF=Y ¥ ¢ ¥ ¥ G Y gy
K=1o'=1 k=1o=1 ﬁ¢o
_ N t i i C]E,a/)c(a )e jote Z 2P (xy —xi) e
M=l a/=1k=1a=1 20 (27PB) e

So, we have proved the following.
Theorem 2. The squared norm of the error functional (3) of a quadrature formula with derivatives in the space

—

Lgm)*(O, 1) is written in the form

—

t N
16125 (0,1)1? = ZZZ

K=1a'=1k=1

271:1[3 (oo —xz)

C/a (X (X (X+(X - (24)
| ﬁ;o 275ﬁ 2m—o—a

/

ﬁM~
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4. FINDING THE MINIMUM NORM OF THE ERROR FUNCTIONAL FOR
QUADRATURE FORMULAS WITH DERIVATIVES

To find the minimum of square of the norm (24), we apply the method of indefinite Lagrange multipliers. To do this,
we consider the Lagrange function

—

W(C@, 1) = [|e|L"" (0, 1) > +24(¢, 1).

Using the formulas (5) and (24), the Lagrange function is reduced to the form

N t N t (o) (a a O£+(X Zmﬁ (=) N )
SRyt S (F e )
K=1a'=1k=1a=1 k=1

p70 (

Equating to zero all partial derivatives with respect to C,Ea) andA,k=1,2,...N,a=0,1,2,...,t, from the function
¥(C®) 1), we have

dW(C@, A
ac™
Ow(C@ A
ER

=0, k=1,2,..,.N, a=0,1,....1,

These gives the system of equations

i i N Z 271:1[3(xk/—xk)
a oo 7,+6[a]/1:0, (25)
o e [37&0 277,'[3 2m—oa—o
atk=1,2,...N, a=0,1,...,1,
N
y o=t (26)
k=1

/
Here C,E,a ) are the coefficients of quadrature formulas with derivatives, A is a constant d[a] is equal to one for o0 =0
and is equal otherwise, i.e.

lifa=0,
MM_{Oﬁa#O
The solution of the system (25) and (26) will be denoted by Ca',((a), A, which represent a stationary point for the

Lagrange function ¥(C(®) 1).
Then the system (25) and (26) can be rewritten as

N 1 , 273 (2 —xi.) .

(o) .o +a e

;i i §laji =0, 27)
kgl zxgo k B;O (27‘5[3)2'”70‘70‘
k=12,...N, a=0,1,....t,
N . (0
Yy ¢V =1. (28)
k=1

020030-9



Let us denote by

eZn’iﬁx
BZm ()C) )
L Gapr
then
2B ()
B>, (xk/ —xk) = A v
g L Gappr
. 2mﬁx
B2 i . l(X (X —_—
m—o— B;O Zﬂﬁ 2m—o—a
With this notation, the system (27), (28) can be rewritten as
Z Z B2m o— oc’(xk/_xk)"‘a[ M':Ov

K=1a'=

at k: 1,2,.,N, a=0,1,...,1,

From the theory of the method of indefinite Lagrange multipliers it follows that é,ga), k=1,2,...N, ¢« =0,1,...;¢

are the sought values of the optimal coefficients of the quadrature formula (1) with derivatives in the space Lgm) (0,1)

and they give the conditional minimum to the square of the norm ||€|Lgm)*(07 1)||? of the error functional of this
quadrature formula under the condition (5).
The following holds.

Theorem 3. Let the error functional (£, @) be defined on the Sobolev space Lgm) (0,1), i.e. its value for a constant
is equal to zero and optimal, i.e. among all functionals of the form (3) with a given system of nodes xy, it has the

smallest norm in the dual space Lgm)*(O7 1). Then there exists a solution W(x) of equation (7) and its derivatives of

order @ reduce to zero at the points xi and belongs to Lgm) (0,1).
Proof. Consider now the formula (8) for the general solution of equation (7). Let us choose the constant dy = )

in it, where A is the value we found for the Lagrange multiplier. With this choice, for the values of the function yy(x)
and its derivatives of order ¢ at the points x;, we have

271:1[3(ku —xi) N

Yy “H“ZW*‘S[“VL

K=10/=0 ﬁ#O

By virtue of the equations (27) and (28), we see that w/@ (x)) =0fork=1,2,..,Nand ¢ =0,1,2,...,¢
This proves Theorem 3.
It should be noted that a similar theorem in the case & = 0 was proved by 1. Babushka (see [1]).

CONCLUSION

Thus, in the present manuscript we studied the problem on construction of Hermite type optimal quadrature formulas

in the Sobolev space L§m> (0, 1) of periodic functions. Here the main results are formulated in three theorems. In the
first theorem we obtained the extremal function of the considered quadrature formulas. In the second theorem we
obtained the square of the norm for the error functional of Hermite type quadrature formulas. The last theorem is
devoted to generalization of Ivo Babuska’s theorem on zeros of extremal functions.
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