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Abstract. The paper is devoted to investigation of optimal formulas for approximate integration with derivatives in the Sobolev

space L̃(m)
2 (0,1) of periodic functions. Here the extremal function for quadrature formulas of Hermite type is obtained. Applying

this extremal function the square of the norm for the error functional of the considered Hermite type quadrature formulas is
calculated. It is obtained the system of linear algebraic equations minimizing the norm of the error functional by coefficients of
the quadrature formulas. Furthermore, here, Ivo Babuška’s theorem on zeros of extremal functions for quadrature formulas is
generalized.

1. INTRODUCTION

In this paper, the results of integration of periodic functions from [1, 2, 3] are generalized to the case of quadrature
formulas that are analogs of Hermite’s quadrature formulas.

Recall that, a function f (x) is called periodic if f (x) = f (x+β ) fulfills for any integer β ∈ Z and all x. We give the

definitions of the Sobolev space L̃(m)
2 (0,1) of periodic functions.

L̃(m)
2 (0,1), m ≥ 1 is the Hilbert space of periodic functions f (x),−∞ < x < ∞, differing by a constant, m derivative

(in the generalized sense) is square integrable. In this space the inner product is defined as

( f ,g)m =

1∫
0

dm f
dxm

dmg
dxm dx.

The norm in the space L̃(m)
2 (0,1) corresponding to the inner product has the form

‖ϕ|L̃(m)
2 ‖2 = (ϕ,ϕ)

or

‖ϕ|L̃(m)
2 ‖2 =

1∫
0

(
ϕ(m)(x)

)2
dx.

Let ϕ from the space L̃(m)
2 (0,1). Integral by segment of the function ϕ , we going to approximately replace by linear

combination of the values of ϕ and its derivatives ϕ(α)(x) at the nodes xk ∈ [0,1], k = 1,2, ...,N, N ≥ m and N is a
integer number.

Throughout what follows, by a quadrature formula with a derivatives we mean the following approximate equality

1∫
0

ϕ(x)dx ∼=
N

∑
k=1

t

∑
α=0

C(α)
k ϕ(α)(xk) (1)
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or

∞∫
−∞

ε[0,1](x)ϕ(x)dx ∼=
N

∑
k=1

t

∑
α=0

C(α)
k ϕ(α)(xk),

where ε[0,1](x) is the indicator of the interval [0,1], t ≤ m− 1. Here xk are the nodes and C(α)
1 ,C(α)

2 , ...,C(α)
N are the

coefficients of the quadrature formula.
The error of the quadrature formula is the difference

(�,ϕ) =
1∫

0

ϕ(x)dx−
N

∑
k=1

t

∑
α=0

C(α)
k ϕ(α)(xk) (2)

=

∞∫
−∞

[(
ε[0,1](x)−

N

∑
k=1

t

∑
α=0

C(α)
k (−1)α δ (α)(x− xk)

)
∗φ0(x)

]
ϕ(x)dx,

where δ (x) is the Dirac delta-function, φ0(x) =
∞
∑

β=−∞
δ (x−β ),

�(x) =

(
ε[0,1](x)−

N

∑
k=1

t

∑
α=0

C(α)
k (−1)α δ (α)(x− xk)

)
∗φ0(x). (3)

The equality (2) defines on functions ϕ additive and homogeneous periodic functional � which is called the error
functional of quadrature formulas (1). In the periodic case the error functional of quadrature formulas is defined by

the formula (3). The conjugate space
˜
L(m)∗

2 (0,1) consists of all periodic functionals that are orthogonal to one, i.e.

(�,1) = 0 (4)

Since any periodic algebraic polynomial is a constant. This condition does not depend on m. The orthogonality
condition for �(x) with one yields the equality

N

∑
k=1

C(0)
k = 1 (5)

which we will always consider fulfilled.

The unknown parameters of the quadrature formulas (1) are the nodes xk and the coefficients C(0)
k ,C(1)

k , ...,C(t)
k , k =

1,2, ...,N.

A formula for the error of which for a given number of nodes N is the smallest norm in the space
˜
L(m)∗

2 (0,1) of
periodic functionals is called an optimal quadrature formula.

The main results of this work are: Finding the extremal function of a Hermite type quadrature formula, computation
the norm of the error functional for the Hermite-type quadrature formula, obtaining a system of algebraic equations
for finding the optimal coefficient of quadrature formulas. Proof of general from of a theorem I.Babuška. Similar
issues are considered in works (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27])

2. EXTREMAL FUNCTION OF THE HERMITE-TYPE QUADRATURE FORMULA

Thus, we consider the problem of constructing quadrature formulas with derivatives in statement of functional, then

to find explicit form for the norm of the error functional �(x) in the Sobolev space L̃(m)
2 (0,1), we will use the notation

of an extremal function of this functional introduced by Sobolev [1].
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Definition 1. Function ψ�(x) from the space L̃(m)
2 (0,1) is called the extremal function of the given error functional

�(x), if the following holds

(�,ψ�) =

1∫
0

�(x)ψ�(x)dx = ‖�|˜L(m)∗
2 ‖ · ‖ψ�|L̃(m)

2 ‖.

It is known, that by definition the space L̃(m)
2 (0,1) is a Hilbert space, the inner product in it is given by the formula

(ϕ,ψ)m =

1∫
0

ϕ(m)(x)ψ(m)(x)dx. (6)

By the Riesz theorem, our functional �(x) is represented the as follows

(�,ϕ) = (ψ�,ϕ)m

for any ϕ(x) from L̃(m)
2 (0,1). Here ψ�(x) from L̃(m)

2 (0,1) is uniquely defined by the functional �(x) and it is an extremal
for it.

Besides, ψ�(x) is a Riesz element and satisfies the equality

‖�|˜L(m)∗
2 (0,1)‖= ‖ψ�|L̃(m)

2 (0,1)‖.
The function ψ�(x) can be expressed in terms of �(x) by solving some differential equation. Really, integrating by

parts the expression on the right-hand side of the formula (6) and using the periodicity of functions ϕ(x) and ψ�(x),
after some simplifications, we obtain

(�,ϕ) = (−1)m
∫ 1

0

d2mψ�(x)
dx2m ϕ(x)dx.

This immediately implies that the function ψ�(x) is a generalized solution of the equation

d2mψ�(x)
dx2m = (−1)m�(x). (7)

Now we find an explicit expression for the extremal function of the error functional �(x) defined by the formula

(3). This will allow us to calculate the norm of the error functional �(x) in the conjugate space
˜
L(m)∗

2 (0,1), i.e.

‖�|˜L(m)∗
2 (0,1)‖.

The following is true.

Theorem 1. The extremal function of the error functional �(x) defined by formula (3) in the space L̃(m)
2 (0,1) is all

solutions of equation (7) are expressed in the form

ψ�(x) =−
N

∑
k=1

t

∑
α=0

C(α)
k (−i)α ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α +d0. (8)

Here C(α)
k are coefficients of the quadrature formula in the form (1), d0 is some constant, i2 =−1.

Proof. We find periodic solution of equation (7). For this, we use the following known formulas of the Fourier
transform [1]
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F [ϕ(x)] =
∞∫

−∞

e2πipxϕ(x)dx,

F−1[ϕ(x)] =
∞∫

−∞

e−2πipxϕ(x)dx,

F [δ (x− xk)] =

∞∫
−∞

e2πipxδ (x− xk)dx = e2πipxk ,

F [δ (x)] =
∞∫

−∞

e2πipxδ (x)dx = 1,

F [1(x)] = δ (p),
F [φ0(x)] = φ0(p),

F
[
d2m

dx2m

]
= (2πip)2m,

F−1F [ϕ(x)] = FF−1[ϕ(x)] = ϕ(x),

F
[
δ (α)(x− xk)

]
=

∫
e2πipxδ (α)(x− xk)dx = (−1)α(2πip)α e2πipxk .

Using the formula (3) the equation (7) is reduced to the form

d2m

dx2m ψ�(x) = (−1)m

[
ε[0,1](x)−

N

∑
k=1

t

∑
α=0

(−1)αC(α)
k δ (α)(x− xk)

]
∗φ0(x). (9)

Applying the Fourier transform to both sides (9), we obtain

F
[
d2m

dx2m ψ�(x)
]
= (−1)mF

[(
ε[0,1](x)−

N

∑
k=1

t

∑
α=0

(−1)αC(α)
k δ (α)(x− xk)

)
∗φ0(x)

]
. (10)

In the formula (10), since the Fourier transform is a linear we apply the Fourier transform to each term separately.
Using the Fourier transform of the derivatives, we have

F
[
d2m

dx2m ψ�(x)
]
= (2πip)2mF [ψ�(x)] . (11)

Calculating the convolution and using the fundamentalness of the region Ω0 = [0,1], we obtain

εΩ0
(x)∗φ0(x) = ∑

β
ε[0,1](x−β ) = 1.

From this it is easy to see that

F
[
εΩ0

(x)∗φ0(x)
]
= δ (p). (12)

Now we calculate the Fourier transform of the convolution in (10) with α = 0

F

[
N

∑
k=1

C̊(0)
k δ (x− xk)∗φ0(x)

]
=

N

∑
k=1

C̊(0)
k F [δ (x− xk)]F [φ0(x)]
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=
N

∑
k=1

C̊(0)
k e2π pxk ∑

β
δ (p−β ) =

N

∑
k=1

C̊(0)
k e2πipxk δ (p)+

N

∑
k=1

C̊(0)
k e2πipxk ∑

β �=0

δ (x− p).

Using the property of the delta function, we have

e2πipxk δ (p) = δ (p)

and the formula (5), we have

N

∑
k=1

C̊(0)
k e2πipxk δ (p) = δ (p).

Then

F

[
N

∑
k=1

C̊(0)
k δ (x− xk)∗φ0(x)

]
= δ (p)+

N

∑
k=1

C̊(0)
k e2πipxk ∑

β �=0

δ (x− p). (13)

Now we proceed calculation of the following Fourier transform of convolution in (10) for 1 ≤ α ≤ t.
Since the Fourier transform is a linear, we obtain

F

[
N

∑
k=1

t

∑
α=1

(−1)αC(α)
k δ (α)(x− xk)∗φ0(x)

]
=

N

∑
k=1

t

∑
α=1

(−1)αC(α)
k F [δ (α)(x− xk)]F [φ0(x)]

=
N

∑
k=1

t

∑
α=1

(−1)αC(α)
k (−1)α(2πip)α e2πipxk φ0(p) =

N

∑
k=1

t

∑
α=1

C(α)
k (2πip)α e2πipxk ∑

β
δ (p−β )

=
N

∑
k=1

t

∑
α=1

C(α)
k

(
(2πip)α e2πipxk δ (p)+(2πip)α e2πipxk ∑

β �=0

δ (p−β )

)
.

Since (2πip)α e2πipxk δ (p) = 0, for α ≥ 1 we have

F

[
N

∑
k=1

t

∑
α=1

(−1)αC(α)
k δ (α)(x− xk)∗φ0(x)

]
=

N

∑
k=1

t

∑
α=1

C(α)
k (2πip)α e2πipxk ∑

β �=0

δ (p−β ). (14)

By virtue of (11), (12), (13) and (14) the formula (10 ) takes the following form

(2πip)2mF [ψ�(x)]

= (−1)m

[
δ (p)−δ (p)−

N

∑
k=1

C̊ke2πipxk ∑
β �=0

δ (p−β )−
N

∑
k=1

t

∑
α=1

Cα
k (2πip)α e2πipxk ∑

β �=0

δ (p−β )

]

= (−1)m+1
N

∑
k=1

t

∑
α=1

Cα
k (2πip)α e2πipxk ∑

β �=0

δ (p−β ). (15)

This shows that the right-hand side of (15) is equal to zero in the vicinity of the origin.

020030-5



Therefore, we can divide both sides of (15) by (2πip)2m.
This division will be ambiguous, [1] the function F [ψ�(x)] is determined from equation (15) up to a term of the

form

d0δ (p)+
2m−1

∑
α=1

dα D(α)(p),

i.e. a linear combination of δ (p) and D(α)(p). However, the function F [ψ�(x)] must be harrow-shaped, then all terms
except d0δ (p) must be omitted. From here we get

F [ψ�(x)] = (−1)m+1
N

∑
k=1

t

∑
α=0

C(α)
k (2πip)α e2πipxk ∑

β �=0

δ (p−β )
(2πip)2m +d0δ (p). (16)

It is not difficult to see that

(2πip)α e2πipxk ∑
β �=0

δ (p−β )
(2πip)2m = ∑

β �=0

(2πiβ )α e2πiβxk
δ (p−β )
(2πiβ )2m . (17)

By virtue of (17) equality (16) takes the form

F [ψ�(x)] =−
N

∑
k=1

t

∑
α=0

C(α)
k ∑

β �=0

(2πiβ )α e2πiβxk δ (p−β )
(2πβ )2m +d0δ (p).

Hence, applying the inverse Fourier transform, we get

ψ�(x) =
N

∑
k=1

t

∑
α=0

C(α)
k ∑

β �=0

(2πiβ )α e−2πiβ (x−xk)

(2πβ )2m +d0. (18)

If in (18) we substitute −β instead of β , then the value of ψ�(x) does not change, then we have

ψ�(x) =−
N

∑
k=1

t

∑
α=0

C(α)
k (−i)α ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α +d0

which shows the validity of Theorem 1.
Now calculating the derivatives of ψ�(x) with respect to x we have

ψ ′
�(x) =−

N

∑
k=1

t

∑
α=0

C(α)
k (−1)α(i)α+1 ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α−1
,

ψ ′′
� (x) =−

N

∑
k=1

t

∑
α=0

C(α)
k (−1)α iα+2 ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α−2
,

or

ψ(q)
� (x) =−

N

∑
k=1

t

∑
α=0

C(α)
k (−1)α iα+q ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α−q , q = 1,2, ..., t.

Here the series converges for 2m−2t > 1, or m− t > 1
2 . Hence, in our case, t = 0,1, ...,m−1.
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3. THE NORM OF THE ERROR FUNCTIONAL FOR QUADRATURE FORMULAS
WITH DERIVATIVES

The Hermite-type quadrature formulas with the error functional �(x) defined by the formula (3), considered on the

Sobolev space L̃(m)
2 (0,1), can be characterized in two ways

In one side, it is determined by the coefficients C(α)
k , k = 1,2, ...,N; α = 0,1, ..., t, subject to conditions

(�(x),1) = 0,

but on the other side, the extremal function ψ�(x) of the quadrature formula with derivatives, which is obtained as a
solution to the equation

d2mψ�(x)
dx2m = (−1)m�(x)

and can be written as

ψ�(x) =−
N

∑
k=1

t

∑
α=0

C(α)
k (−1)α iα ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α +d0. (19)

The norm of the error functional �(x) of the quadrature formula with derivatives of the form (1) is expressed in
terms of the bilinear form of the coefficients of this quadrature formula and the values of the extremal function given
by the formula (19)

In fact, since the space L̃(m)
2 (0,1) is a Hilbert space, the square of the norm of the error functional �(x) and the

extremal function ψ�(x) are related by the relation

‖�|˜L(m)∗
2 (0,1)‖2 =

1∫
0

(
dmψ�

dxm

)2

dx = (−1)m
1∫

0

d2mψ�

dx2m ψ�(x)dx,

where ψ�(x) is the extremal function of the quadrature formula with derivatives of the form (1).

But
d2mψ�(x)
dx2m = (−1)m�(x), and hence

‖�|˜L(m)∗
2 (0,1)‖2 = (�,ψ�) =

1∫
0

�(x)ψ�(x)dx. (20)

Hence, using formulas (3), (19), we calculate the square of the norm of the error functional for the quadrature
formula

‖�|˜L(m)∗
2 (0,1)‖2 = (�,ψ�) =

1∫
0

�(x)ψ�(x)dx

=

1∫
0

((
ε[0,1](x)−

N

∑
k′=1

t

∑
α ′=0

C(α ′)
k′ (−1)α ′

δ (α ′)(x− xk′)

)
∗φ0(x)

)

×
(
−

N

∑
k=1

t

∑
α=0

C(α)
k (−i)α ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α +d0

)
dx. (21)
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Taking into account the condition (4), the integral (21) is calculated over the segment [0,1] and the nodes xk belong
to the segment [0,1], then (21) takes the following form

‖�|˜L(m)∗
2 (0,1)‖2 =

1∫
0

(
ε[0,1](x)−

N

∑
k′=1

t

∑
α ′=0

C(α ′)
k′ (−1)α ′

δ (α ′)(x− xk′)

)

×
(
−

N

∑
k=1

t

∑
α=0

C(α)
k (−i)α ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α

)
dx.

It is not difficult to see that the integral of the function e2πiβ (x−xk), i.e.

1∫
0

e2πiβ (x−xk)dx = 0, β =±1,±2, .... (22)

By virtue of (22), the square of the norm of the error functional is reduced to the form

‖�|˜L(m)∗
2 (0,1)‖2 =

1∫
0

(
N

∑
k′=1

t

∑
α ′=0

C(α ′)
k′ (−1)α ′

δ (α ′)(x− xk′)

)

×
( N

∑
k=1

t

∑
α=0

C(α)
k (−i)α ∑

β �=0

e2πiβ (x−xk)

(2πβ )2m−α

)
dx. (23)

Using the property of δ -function, we have

1∫
0

δ (α ′)(x− xk′)e
2πiβ (x−xk)dx = (−1)α ′

(2πiβ )α ′
e2πiβ (xk′−xk).

Then equality (23) takes the form

‖�|˜L(m)∗
2 (0,1)‖2 =

N

∑
k′=1

t

∑
α ′=1

C(α ′)
k′

N

∑
k=1

t

∑
α=1

C(α)
k (−1)α iα+α ′ ∑

β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′

=
N

∑
k′=1

t

∑
α ′=1

N

∑
k=1

t

∑
α=1

C(α ′)
k′ C(α)

k (−1)α iα+α ′ ∑
β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ .

So, we have proved the following.

Theorem 2. The squared norm of the error functional (3) of a quadrature formula with derivatives in the space
˜
L(m)∗

2 (0,1) is written in the form

‖�|˜L(m)∗
2 (0,1)‖2 =

N

∑
k′=1

t

∑
α ′=1

N

∑
k=1

t

∑
α=1

C(α ′)
k′ C(α)

k (−1)α iα+α ′ ∑
β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ . (24)
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4. FINDING THE MINIMUM NORM OF THE ERROR FUNCTIONAL FOR
QUADRATURE FORMULAS WITH DERIVATIVES

To find the minimum of square of the norm (24), we apply the method of indefinite Lagrange multipliers. To do this,
we consider the Lagrange function

Ψ(C(α),λ ) = ‖�|˜L(m)∗
2 (0,1)‖2 +2λ (�,1).

Using the formulas (5) and (24), the Lagrange function is reduced to the form

Ψ(C(α),λ ) =
N

∑
k′=1

t

∑
α ′=1

N

∑
k=1

t

∑
α=1

C(α ′)
k′ C(α)

k (−1)α iα+α ′ ∑
β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ +2λ

(
N

∑
k=1

C(0)
k −1

)
.

Equating to zero all partial derivatives with respect to C(α)
k and λ , k = 1,2, ...,N, α = 0,1,2, ..., t, from the function

Ψ(C(α),λ ), we have

∂Ψ(C(α),λ

∂C(α)
k

= 0, k = 1,2, ...,N, α = 0,1, ..., t,

∂Ψ(C(α),λ
∂λ

= 0.

These gives the system of equations

N

∑
k′=1

t

∑
α ′=0

C(α ′)
k′ (−1)α ′

iα
′+α ∑

β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ +δ [α]λ = 0, (25)

at k = 1,2, ...,N, α = 0,1, ..., t,

N

∑
k′=1

C(0)
k′ = 1. (26)

Here C(α ′)
k′ are the coefficients of quadrature formulas with derivatives, λ is a constant δ [α] is equal to one for α = 0

and is equal otherwise, i.e.

δ [α] =

{
1 if α = 0,
0 if α �= 0.

The solution of the system (25) and (26) will be denoted by C̊(α)
k , λ̊ , which represent a stationary point for the

Lagrange function Ψ(C(α),λ ).
Then the system (25) and (26) can be rewritten as

N

∑
k′=1

t

∑
α ′=0

C̊(α ′)
k′ iα

′+α ∑
β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ +δ [α]λ̊ = 0, (27)

k = 1,2, ...,N, α = 0,1, ..., t,
N

∑
k′=1

C̊(0)
k′ = 1. (28)
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Let us denote by

B2m(x) = ∑
β �=0

e2πiβx

(2πβ )2m ,

then

B2m(xk′ − xk) = ∑
β �=0

e2πiβ (xk′−xk)

(2πβ )2m ,

B2m−α ′−α(x) = iα+α ′ ∑
β �=0

e2πiβx

(2πβ )2m−α−α ′ .

With this notation, the system (27), (28) can be rewritten as

N

∑
k′=1

t

∑
α ′=0

C̊(α ′)
k′ (−1)α ′

B2m−α−α ′(xk′ − xk)+δ [α]λ̊ = 0,

at k = 1,2, ...,N, α = 0,1, ..., t,
N

∑
k′=1

C̊(0)
k′ = 1.

From the theory of the method of indefinite Lagrange multipliers it follows that C̊(α)
k , k = 1,2, ...,N, α = 0,1, ..., t

are the sought values of the optimal coefficients of the quadrature formula (1) with derivatives in the space L̃(m)
2 (0,1)

and they give the conditional minimum to the square of the norm ‖�|˜L(m)∗
2 (0,1)‖2 of the error functional of this

quadrature formula under the condition (5).
The following holds.

Theorem 3. Let the error functional (�,ϕ) be defined on the Sobolev space L̃(m)
2 (0,1), i.e. its value for a constant

is equal to zero and optimal, i.e. among all functionals of the form (3) with a given system of nodes xk, it has the

smallest norm in the dual space
˜
L(m)∗

2 (0,1). Then there exists a solution ψ�(x) of equation (7) and its derivatives of

order α reduce to zero at the points xk and belongs to L̃(m)
2 (0,1).

Proof. Consider now the formula (8) for the general solution of equation (7). Let us choose the constant d0 =−λ̊
in it, where λ̊ is the value we found for the Lagrange multiplier. With this choice, for the values of the function ψ�(x)
and its derivatives of order α at the points xk, we have

ψ(α)
� (xk) =−

N

∑
k′=1

t

∑
α ′=0

C̊(α ′)
k′ (−1)α ′

iα
′+α ∑

β �=0

e2πiβ (xk′−xk)

(2πβ )2m−α−α ′ −δ [α]λ̊ .

By virtue of the equations (27) and (28), we see that ψ(α)
� (xk) = 0 for k = 1,2, ...,N and α = 0,1,2, ..., t.

This proves Theorem 3.
It should be noted that a similar theorem in the case α = 0 was proved by I. Babušhka (see [1]).

CONCLUSION

Thus, in the present manuscript we studied the problem on construction of Hermite type optimal quadrature formulas

in the Sobolev space L̃(m)
2 (0,1) of periodic functions. Here the main results are formulated in three theorems. In the

first theorem we obtained the extremal function of the considered quadrature formulas. In the second theorem we
obtained the square of the norm for the error functional of Hermite type quadrature formulas. The last theorem is
devoted to generalization of Ivo Babuška’s theorem on zeros of extremal functions.
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