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W’éi,'o) fazosida optimal interpolyatsion formula

Biz p(z) = Py(z) = 22;0 Cp - ¢(xp) interpolyatsion formulani
tahlil gilamiz. So‘ngra bu interpolyatsion formulaning xatoligini
baholaymiz. ¢ xatolik funksionalining ekstremal funksiyasini
topamiz. Shuningdek, % — o2 differensial operatorning diskret
analogi D(hf3) ni quramiz. Va nihoyat, interpolyatsion formula
optimal koeffitsientlarining aniq ko‘rinishi topildi.

Kalit so’zlar: Gilbert fazosi; xatolik funksionali; ekstremal
funksiya; optimal interpolyatsion formula.

OnrnMasibHasi HHTEPIOJSIIUOHHAsSL (POPMyJia B HPOCTPAHCTBE
Wy,

Pacemorpum nrTepnonsimuonnyio dopmyiy p(z) = Py(z) =
Zg\;o Cp-p(xp). BaTeM OLEHHM NOTPEIIHOCTD STOI HHTEPIIOISI-
unonHoit dopmysl. Haitnem skcrpemaibayio GyHKIMo pyHK-
muoHasta norpemsocTr £. Takyke, CTPOMM JMCKPETHBIH aHAIOT
D(hB) muddepennpansHOro oneparopa % — 0. Hakoner, Mb
HAXOJMUM SIBHBIH BHJ ONTHMAJBHBIX KO3(D(MUIMEHTOB HHTEPIO-
JISIIUOHHOM (hOPMYJIBI.

Kimouesble cioBa: 'miisbepToBo mpocTpaHCTBO; (DYHKIHOHAT
MOTPENTHOCTH; SKCTPpeMasibHasl (DYHKIHsI; ONTHMAIbHAS HHTEP-
noJIsSIHOHHasT (hopMyIIa.

MSC 2010: 41A05, 41A15, 65D30, 65D32.
Keywords: Hilbert space; the error functional; the extremal function; optimal interpolation formula.

Introduction

Many works are devoted to the theory of splines and its applications. The first spline functions were constructed
from pieces of cubic polynomials. After that, this construction was modified, the degree of polynomials increased,
but the idea of their constructions remains permanently. The next essential step in the theory of splines was
Holladay’s result [10], connecting Schoenberg’s cubic splines with the solution of the variational problem on
minimum of square of a function norm from the space L?). Further, the Holladay result was generalized by
Carl de Boor [8]. Further, a large number of papers appeared, where, depending on specific requirements, the
variational functional was modified (see, for example, [I} 21 B 4] 5] [7} 14} 18], and for more review see [I1]).
The present paper is devoted to a variational method. Here we construct an optimal interpolation formula.

1V.I.LRomanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan. E-mail:
bssamandar@gmail.com

2Bukhara State University, Bukhara, Uzbekistan
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‘We consider the following interpolation formula
plx) = Py(r) = Z Cs - pl5) (1)
Here Cs and z3 (€ [0,1]) are the coefficients and the nodes of the interpolation formula , respectively.
‘We suppose that functions ¢ belong to the Hilbert space

‘W(1 0 _ {#:[0,1] = R | ¢ is abs. cont. and ¢’ € L2(0,1)},

equipped with the norm
1/2

am =1 [ (¢'(@) +op(@)’dey 2)
=1

lll

0)

were ¢ € R and ¢ # 0. The inner product of functions ¢ and 7 in the space Wz(,lg is defined as

e thuge = [ (@) + a0/ @) + ovie)d

The error of the interpolation formula is the following difference

(€.9) = p(2) — ZCE z)e(xs),

which is the value of a functional ¢ at a function . The functional £ is defined as

N
(z) =8z —2) = Y Cpl(2)d(x — z5) @)
=0
and it is called the error functional. Here § is the Dirac delta-function.
According to the Riesz theorem any linear continuous functional ¢ in a Hilbert space is represented in the
form of a inner product. Therefore, in our case, for any function ¢ from WQ(,IU’“) space, we have

(€)= (o, ﬁif) (10) (4)

and

llel

Wz(,l‘;"” = ”"ZJE”W;L;HJ-

Here, 1, is the extremal function for the functional ¢.
It should be noted that according to the Cauchy-Schwarz inequality the absolute value of the error of the
formula is estimated by the norm of the error functional as follows

14 @) < el 0= - Nellyygeo-

It should be noted that the function 7, satisfying the equality in the last inequality is called the eztremal
function for the functional ¢ [I5].

Consequently, the problem of constructing the optimal interpolation formula in the space WQ - ) is finding
the following quantity for fixed nodes xg:

|1§‘

The coefficients satisfying the last equality are called the optimal coefficients and they are denoted as éﬁ (if

exist). The interpolation formula with coefficients Cn'_@ is called the optimal interpolation formula and {is the
error functional corresponding to the optimal interpolation formula A

= inf sup  |(4, )
Wi G el a1

wil



Babaev S. S., Davronov J. R. , Mamatova N. H. On an optimal interpolation formula in the space i/V(1 0 3

The main aim of the present paper is to construct the optimal interpolation formula in W( 0 space and
to find explicit formulas for optimal coeflicients. First such a problem was stated and studled by S L Sobolcv
in [I6], where the extremal function of the interpolation formula was found in the Sobolev space T/V2

The rest of the paper is organized as follows. In Section 2 the extremal function which corresponds to the
error functional ¢ is found and with its help representation of the norm of the error functional (@ is calculated.
Further, in order to find the minimum of ||¢]| by coefficients Cj the system of linear equations is obtained for
the coefficients of optimal interpolation formulas ll in the space Wz(l,,m, in Section 3 an algorithm for solution
of the system is given; in Section 4 the discrete analog D(hS3) of the differential operator is constructed; in
Section 5 the algorithm for finding of coefficients of optimal interpolation formulas ( is given; Section 6 is
devoted to calculation of optimal coefficients using the algorithm which is given in Section 5

The extremal function and the norm of the error functional

Using the integration by parts for the inner product {y, v 1o we have

D

MWMpzzﬁww+WMWMHWMW1

e(@) (i) + otpu(a

fW%%mew)
Putting this result to the right-hand side of @) we get

(£.0) = p(2)(¥(x) + oope(z)) —/ﬂ (¥7 (z) — *te(x))p(2)de.

Hence for 1y we come to the following differential equation
U () — () = —l(x) (5)
with the boundary conditions
Pp(1) + oe(1) =0, ¥;(0) + atbe(0) = 0. (6)

Now we solve equation with the conditions @ Tt is known that the general solution of a non-homogeneous
differential equation is the sum of the general solution of the corresponding homogeneous equation and a
particular solution of the equation.

Therefore, we first consider the following homogeneous equation corresponding to equation (

Y7 (x) = o*y(z) = 0. ()

The characteristic equation for @ is k2 — 0> = 0 and it has the roots k = +o. Hence the general solution for
equation @ is d1€7% + doe” ", where dy and d, are real numbers.
It is easy to check that a partlcular solution of equation @ is

—{(x) * G(x),

where G(x) is a fundamental solution of the operator % — 02 and it has the form

G(x) = Sg;‘{(rx) (eo'.r _ e_'”) ) (8)

Then we get the following general solution of equation @
Yp(x) = —(x) * G(x) + d1e”® + doe™ 7. 9)
Hence, using conditions @ we come to equations

(¢,e77*) =0 and d; = 0. (10)
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ox

The first equation in (L0} means exactness of the approximation formula ( for the function e~7%, i.e.

N
D Cpemmmr = e (11)
B=0

Now, taking into account and denoting d = ds, from @I) we have the following
Ye(z) = —L(z) * G(z) + de™ 7"

Thus, the following result has been proved.
Theorem 1. The solution of the boundary value problem -@ has the following form

Ye(z) = —€(z) * G(z) + de™ 7%, (12)

where G(z) is defined by (@ Furthermore, vy is the extremal function for the error functional £.
By the Riesz theorem for the square of the norm of the error functional the following equality holds

1€lly .00 = (€:40¢) = WHW;‘},’”" Aelly .0

Hence, using ([12) and for the norm of the error functional we get the following expression

N N N
12 00w =237 CoGlz = 22) = 32 3 CaC, Gl = 2,). (13)
-

B=0~=0

Thus, using the last equality we can get an upper bound for the error of the interpolation formulas ([L).
Further, in order to obtain the optimal interpolation formula of the form we should find the minimum of
the expression by coefficients C's under the condition ([10].

For finding the point of the conditional minimum of the expression under the condition (@ we apply
the Lagrange method.

Consider the function

T(C.A) =l —2A(£,e77%),

2
i
where C = (Cy, C1,...,Cn) and A is a Lagrange multiplier.

Equating to 0 the partial derivatives of the function ¥ by Cpg (8 =0, N) and \, we get the following system
of linear equations

N
G(z—xp) =Y C,G(xg—a,) —A-e7% =0, B=0,1,..,N, (14)
=0
N
d O e =, (15)
=0

where G(z) is defined by equality ‘
We have obtained the linear system of N + 2 unknowns with N 4 2 equations.
Next, we solve the system -.

An algorithm for solution of the system ([L4))-([15))

Below mainly is used the concept of discrete argument functions and operations on them. The theory of discrete
argument functions is given in [I5] [I7]. For completeness we give some definitions about functions of discrete
argument.

Assume that the nodes zz are equal spaced, i.e. z3 = hf3, h = %T N=12 ..

Definition 1. The function @(hf3) is a function of discrete argument if it is given on some set of integer
values of 3.

Definition 2. The inner product of two discrete argument functions p(h/3) and ¥(hf3) is given by

oo

[e(hB), w(hB) = > w(hB) - w(hB),

B=—00



(1.0) g

WZ,G’

Babaev S. S., Davronov J. R. , Mamatova N. H. On an optimal interpolation formula in the space

if the series on the right-hand side converges absolutely.
Definition 3. The convolution of two functions ¢(h3) and (h/3) is the inner product
o0

@(hB) * (hB) = [p(hy), v(hB = )] = 3 @(hy) - 9(hf = hy).

y=—00
. We rewrite the system — in the
(16)

1

Now we turn on to our problem.

Suppose that Cg = 0 when f < 0 and B > N, 25 = h3,h = §

CyxG(hB) + Xe™" =Gz — hB), B
(17

convolution form

N
Z Cg ce B = gm0z,
B=0

We have the following

Problem 1. Find the discrete function Cg and A which satisfy the system @
It should be noted that if we solve Problem 1 we get the optimal coefficients (3'5, A=0,1,....,N. We do not

solve the system — by a direct method. Instead we give an algorithm which is used a discrete analog of
— ¢2. This algorithm allows us to get the explicit formulas for coefficients of the

42

the differential operator 75
optimal interpolation formula ‘
(18)

Further we explain the algorithm.
‘We consider the following two functions
v(hf) = G(hfB) = Cy
(19)

and
w(hB) = v(hB) + X - e~ ",
Now we should express the coefficients Cg by the function u(hf3). For this we use the discrete analog D(h/3)
of the operator j? — 2. The discrete argument function D(hf3) satisfies the following equation
(20)

D(hf) x G(hB) = 84(h8),

where §4(hf3) is equal to 0 when 8 # 0 and is equal to 1 when 8 = 0, i.e. §4(hf3) is the discrete delta-function.
(21)

Then for the optimal coefficients Cz we have
Cs = D(hB) * u(hf).
Thus, if we find the function u(h3) then the optimal coefficients é@ will be found from equality . In order

to calculate the convolution in it is required to find the representation of the function u(h/3) for all integer

values of 4. From equality we get that uw(h8) = G(z — h3) for h3 € [0,1]. Now we find the representation
(22)

of the function u(hj) for 5 < 0 and g > N.
Since Cz = 0 when AS ¢ [0,1] then we get
Cs = D(hB) *u(hB) =0 , kB ¢ [0,1].

Further, we calculate the convolution v(h3) = G(hf3) « Cz for hj ¢ [0,1].
Suppose 3 < 0 then taking into account equalities and , we have

Cs % G(hB) = i C. - G(hf — hy)

y=—

v(hp)

N

hi3 — I

_ ch‘ sgn( fg ) (Ca(hﬁ—ln) _ 6—u(h5—h~,))
=0

l . ahf3 . efoz + E—a'hS . T;

4o
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where
L X
- . . eThy
1 1o wint Y- e?"

So, for < 0 we get
Co'hﬁ' .e—0%

U(hﬁ) = —T + T- Eighﬁ. (23)

Similarly, in the case 5 > N for the convolution v(hj3) = G(hf3) * C3(z) we obtain

thﬁ . e 0%

o —T-e "8, (24)

v(hf) =
From and equalities,

eohB =z

- E T e B0,

vlhB)=4 .. .. (25)
et _T.eoh8 B> N.
‘We introduce the following denotations
a” =T+ A, (26)
at=\-T. (27)

Then taking into account , , @,@,@ we have the following problem.

Problem 2. Find the solution of the equation
D(hB) = u(hB) =0, h3 ¢ [0,1],
which has the form
po(hB=2)
- 4o
u(hB) =< G(z—hf)

oo (hB—2)
T

Here a— and at are unknowns. If we find ¢~ and a* then from and we have

+ a‘ieidhﬁ‘y ﬁ S 07
: 0<B<N, . (28)
+ate e 3= N.

1 _
/\:§(a++a ) (29)
and 1
T= 5(a7 —a’). (30)

Unknowns a~ and a™ we will find from equation , using the discrete argument function D(hS3).
If the function D(hf) is known, we can find the explicit form of the function u(h/3) and we have the optimal
coefficients. Therefore, Problem 2 and Problem 1 will be solved, respectively. In the next section we will construct

the discrete analog D(hf3) of the differential operator %22 — a2

Construction of the discrete analog of the differential operator dd—; —o?
Let us examine the following equation
D(hB) = G(hf) = 4(hB), (31)
where
G(ng) = B gons _ p=ons), (3)

where §4(hf3) is the discrete delta-function.
The following holds.
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Now, we should calculate F[G(z)], for this we use the following equation
(6"(x) — o%8(x)) * Glz) = 6(x).

From here, taking into account F[§%(z)] = (—2mip)®, we have

1
FlGl(p) = CripE—o (40)
Putting in and after some calculation we get
- h 1
FIGlp) = -1 o sy (41)
4% 2 (3= hip+ 29)(3 — h(p — 52))
From , taking into account, we have
h 1 o
F D P)= |~ 332 ai gi
D)= | = 423 2 G5 = o+ 90 5= o= )
The function F [E}] (p) can be described as a Fourier series
FID|(p) = > D(hB)e*™#"". (42)
B=—00
Here D(hj) is the Fourier coefficients of F[B] (p) and
~ h_l — .
D(hf) = FID](p)e """ dp. (43)
0

Applying the inverse Fourier transform to the equality to the formula, we get the harrow-shaped function

o0

D)= Y DhB)x~h).

B=—0c
Thus, by the definition of harrow-shaped function Ij(hﬁ) is the desired function of the discrete argument D(h/3)

or a discrete analogue of the differential operator % — 2. To find the function D (z), the calculation of the
integral is impractical, we find it in the following way. First we calculate an infinite series in @ We

denote
o0

1
S = —.
2 (B =hp+ 52))(B = h(p = 37))

B=—o0

To calculate the infinite series S we use the following well-known formula from the theory of residues, if function
f has the poles 2y, zo, ..., 2, then

Z f(B)=— Z res(wcot wz - f(2)).

B=—00 21,22,..0,%n

We consider the function 1

(z=h(p+ 35))(z = hip - 52))’

here z; = h(p + Z£) and 22 = h(p — &) are poles of order 1. Then

flz)=

S= Y f(8)=-3 res(mcotmz- f(2)). (44)

B=—0cc 21,22
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Theorem 2. The discrete analog of the differential operator % — o? satisfying the equation has the

form
0, 18] = 2,
20
D(hB) = —gan |~ 18l =1, (33)
1+e2h, =0

Proof. It is known from the theory of generalized functions and the Fourier transform, we use a harrow-shaped

function instead of D(hf3). We consider the following equation

D (0)% G (z) = 6(x), (34)

where D (z) = Z;C:_m D(hB)o(z — hB) and G (z) = Z;G:_m G(hB)d(xz — hf3) are harrow-shaped functions
corresponding to the discrete argument functions D(h3) and G(h3) [15].
It is known [I5] that the class of harrow-shaped functions and the class of functions of the discretc argument

are isomorphic. Therefore, instead of the function D(hﬁ) it suffices to investigate the function D (z). Applying
the Fourier transform to both sides of equality (34) and noting that

Flp(z) » ¢ (x)] = Fle] - F¢] , Flé(z)] =

we have
-

FID (2)] FIG (2)] =
FID (@) = ———. (35)
FIG (x)]

Now, we calculate the function F[G (7)] the Fourier transform of the function G (z). The following are

known [I5],
By(x) = Y d(@—p), o(ha)=h" Z e?mieh — 25 r—f (36)

G = 3 GhB)-d(z—hB)
B=—00
= > d@—hB)=hT'CG(x) Y d(h7'z—p)
B=—o00 B=—00
= h7'G(x)- o(h'2). (37)

For the Fourier transform of the function ®y(h~'x) we have

F(®o(h~'x)] = Z/ — B)e”™ M dy = h Z] 8(x — hB)e>™ P dz

B=—00 B=—0cc
= h Z AT = b Z 8(hp — B) = h®o(hp)-

A=—00 A=—oc

Thus,
F[®o(h~tz)] = hdo(hp). (38)

Taking into account and we obtain

FIG (2)] = Flh™'Glx)®y(h~'2)] = h™"F|G(x)] + hdo(hp) = FIG](p) = Bo(hp). (39)
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We obtain the following

Teot Tz 72 h(2mp + oi)
7rcs o Y =i YT :TCOtf
n=h(p+g) (z —h(p+ Z))z—h(p—5))  hoi
and
Teot Tz w2 h(2mp — i)
7res s ol i :—?cotf
s=h(p-52)(z = h(p+ 50))(z — h(p — 37)) ot
Putting the last two equalities in equation (4) we have
_ 72 sin hoi
hoi SiIl( h(27r§+a'i)) Sin( h(27rgffr'i)) .

We denote A = 27" then we get

. (h(27rp + i) A—eh
S = N
2 2ixze7

— oh _
Sm(h(%rp oi),  Ae dhl’

2 C 2iAFeT

—ch __ Ea'h 1— E?a’h

. . e
sinohi = =

2i 2ieh
Using equalities , and we have
2 2A(e27h — 1)
ha )\2cah _ A(]_ + 620—.’1) + Ca’h °
We put the expression obtained for S in then
- A(ngh _ 1)
F = .
GIP) = s — (1 v ) At oo

S=

Hence, taking into account we get

m 2 /\2 ah _ 1 ah A ah 2
Flp) = 22 (éﬂf_el)/)\ B (A= (L4 )\ 4 AR,
Hence we come 5
0 >2
20 =
D(hB) = pEr— eh 13| =1,

—(1+e2h), B=0.

Theorem is proved.

Theorem 3. The discreet analog of the differential operator % — o2 satisfies the following equalities

1. D(hB) e~ " =0, 2. D(hB)+ e =0.
Proof. By direct calculations we have the following
o0
D(hB)x e = 3" D(hy)- e~ 7"
y=—00

— e—p‘hﬁ(D(_h)efah + D(OJEU + d(h)e”h)

2
— ﬁ . E—ahﬁ(_e—o‘h ) cah +14 eQa-.h _ Ea-h . 6,;}1) -0
and
+oo 400
D(hﬁ) xehB = Z D(h’y) L eTh(B=7) = gohB | Z D(h’y) e hY
y=—00 ——
= ¢ (D(~h)e”" + D(0)e’ + D(h) - e~ ")

ahf

= lﬁﬁ(—Za’e”h e p 20(1 + ¥ — 20e7" 6T = 0.
—e

(46)

(47)

(48)

(49)

[m]
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Theorem is proved.

Optimal coefficients in the space Wé}lc;o)

In this section for optimal coefficients by direct calculation of (@ we have the following.

Theorem 4. The coefficients of the optimal approzimation formula m Wz(!la’n) space are as follows:

> ! a(z—hpB)—e~(=—hB=2h)
Cs = m[—sgn(z—hﬁ_h).(g( ) )

+sgu(z — hB+ h) - (e’a(“hﬁ)*em_hﬂm)

+SgH(Z _ hﬁ)(l + 6247!1) X (60‘(2*}15) _ C*U(Z*hﬂ)) } , 8=0,...N.

Proof. We consider the function u(hf3):

)= Gle i, 0<B<N,
o (hB=z)

i + a‘+6*6h5: B<N.

From here we can find unknowns a~ and a* as follows.
For 3 = 0 we have

—0Zz 1
_ a = P e T
4o + 40( )
Hence
EUZ
a =
4o
Similarly, for = N, we get
ﬁo'ﬁfo‘z + a+e—a _ _i ) eo‘z ) e_a EO'E*O'Z
4c 40 4o
Whence
az
at=-%
4o

Thus the function u(hf) is fully determined

_ ga(lag—z)zs—n(hﬁ—z) . B<o,
u(hf) = { G(z - hp), 0<B<N,
o(hB=2) _g—o(hB—2)

1o » B=N.

Now we calculate the optimal coeflicients C using the formula .

Cs = D(hB) +u(hB) = Y D(hy) - u(hf = ).

y=—00
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Hence, using the discrete argument functions D(hf) and u(hj), for g =0,1,..., N we get

Cs = D(hB)=u(hB)

= D(h) {u(hﬁ +h) +u(hB — h)| + D(0) - u(hB)

— -2 eh . [sgn(z —h3—h) (Ea(z—hﬁ—h)—e"(’"'ﬂ'h))
1— e2oh do

+Sgn(z —4h93 +h) . (ca(thaurh) _ c—a’(z—hﬁJrh))
a

oh sgnz—hﬁ Go-(z—hﬁ)_e—a(z—hﬁ)
(1 4 2oy B = ) N

4o

Hence we get the statement of the theorem. Theorem 4 is proved.

Calculation of the norm of the error functional

Firstly, solving the system -, using Theorem 2, taking into account a~ and a™ we have

1
A= §(a7 +at) =0,
Then from we obtain
N
> C.G(xp —wy) = Gz —xg), B=0,1,...,N.

=0

Consequently, for the error functional { from 1| we get

llél

N N N
waor = 2 D CaGz—x5) = D> CsC,Glap — )
. =

=0 =0
N N N
= > Cs (G(z —z5) =) C,G(zs - xw)) +) CsG(z —zp).
B=0 =0 B

Thus, we have

N
”Ellivz“"”* = Z CsG(z — xg).
> =

Conclusion

In this work for construction of optimal approximation formula and estimating it’s error we have done the

following:
¢ the extremal function was found;
e the discrete analog of the differential operator % — o2 was constructed;
e the optimal coefficients were found;
e The error functional of the optimal approximation formula was calculated.

REMARK. If we get o = 1, we have some results of the works [6] [].
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