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Abstract—We consider the direct initial–boundary value problem for the equation of transverse
vibrations of a homogeneous beam freely supported at the ends and study the inverse problem of
determining the time-dependent beam stiffness coefficient. With the help of the eigenvalues and
eigenfunctions of the beam vibration operator, the problems are reduced to integral equations.
The Schauder contraction principle is applied to these equations, and theorems on the existence
and uniqueness of solutions are proved.
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INTRODUCTION

Beams are widely used in the construction of buildings, bridges, overpasses, and other structures.
Most of the bridges currently under construction are girder bridges. This type of structure is the
main one in the construction of short crossings. Beams used in industrial buildings mainly work in
static bending, but when any equipment (machines, compressors, piston engines, etc.) is installed
on them, they also experience dynamic loads of periodic nature. Under such loads, the beams also
perform transverse vibrations [1, 2].

Inverse problems of mathematical physics have been studied for many classes of differential
equations. Inverse problems related to the simplest hyperbolic type equation were explored in the
monograph [3]. For the solutions of inverse dynamic problems, methods for proving local existence
and uniqueness theorems and uniqueness and conditional stability theorems, as well as numerical
approaches to finding the solutions, were considered in the papers [4–13] and elsewhere.

Over the past few years, there has been growing interest in the study of linear and nonlinear
initial–boundary value problems for the beam vibration equation [14–17]. The initial–boundary
problem for the equation of forced vibrations of a cantilevered beam was studied in [18]. Some
initial–boundary value problems and the Cauchy problem were studied for the inhomogeneous beam
vibration equation in [19–21], where solutions in the form of series were constructed and uniqueness,
existence, and stability theorems for the solutions of these problems were proved. An analytical
solution of the differential equation of transverse vibrations of a piecewise homogeneous beam in
the frequency domain was found in [22] for any kind of boundary conditions.

Inverse problems of finding the right-hand side (vibration source) and initial conditions for the
beam vibration equation were studied in [23]. The present paper considers the inverse problem of
determining a time-dependent coefficient in the beam transverse vibration equation. This coefficient
represents the beam stiffness from the physical viewpoint.

1. STATEMENT OF THE PROBLEM

Consider a freely supported homogeneous beam of length l with constant cross-section. Its
forced transverse bending vibrations under the action of an external force G(x, t) are described by
the fourth-order equation

ρSutt + EJuxxxx +Q(t)u = G(x, t),

where ρ is the beam density, S is the cross-section area, E is the modulus of elasticity of the beam
material, and J is the moment of inertia of the cross-section about the horizontal axis; the entire
length of the beam is supported by an elastic base with stiffness coefficient Q(t).
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Dividing by ρS, we write this equation in the form

utt + a2uxxxx + q(t)u = f(x, t), (1)

where a2 = EJ/ρS, q(t) = Q(t)/ρS, and f(x, t) = G(x, t)/ρS. We consider Eq. (1) in the rectan-
gular domain D = {(x, t) : 0 < x < l, 0 < t < T}, where [0, T ] is the time interval, and l is the
beam length, with the initial conditions

u|t=0 = φ(x), ut|t=0 = ψ(x), x ∈ [0, l], (2)

and the boundary conditions

u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = 0, 0 ≤ t ≤ T. (3)

In the direct problem, for given numbers a, l, and T and sufficiently smooth functions q(t), f(x, t),
and φ(x), ψ(x), it is required to find a function u(x, t) ∈ C4,2(D) satisfying Eq. (1) for (x, t) ∈ D
and conditions (2) and (3).

Inverse problem. Find the coefficient q(t) if the following additional information about the
solution of the direct problem (1)–(3) is available:

g(t) =

l∫
0

u(x, t)h(x) dx, t ∈ [0, T ], (4)

where the functions g(t) and h(x) are given and the function h(x) satisfies the conditions

h(x) ∈ C4(0, l), h(0) = h(l) = h′′(0) = h′′(l) = 0. (5)

2. STUDY OF THE DIRECT PROBLEM

Let us transpose the term q(t)u in Eq. (1) to the right-hand side and introduce the notation
F (x, t) = f(x, t)− q(t)u. Then the solution of this equation with the initial conditions (2) and the
boundary conditions (3) satisfies the relation [20]

u(x, t) =

√
2

l

∞∑
n=1

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)

+

√
2

l

∞∑
n=1

1

ωn

t∫
0

Fn(s) sin
(
ωn(t− s)

)
ds sin(µnx),

(6)

where ωn = aµn
2, µn = πn/l, λn = −µn

4 = −(πn/l)4, and

φn =

√
2

l

l∫
0

φ(x) sin(µnx) dx,

ψn =

√
2

l

l∫
0

ψ(x) sin(µnx) dx,

Fn(t) =

√
2

l

l∫
0

F (x, t) sin(µnx) dx.

(7)
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Substituting the expression f(x, t) − q(t)u(x, t) for F (x, t), we write the representation (6) in the
form of the integral equation

u(x, t) =

√
2

l

∞∑
n=1

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)

+
2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

f(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx)

− 2

l

∞∑
n=1

1

ωn

t∫
0

q(s)

l∫
0

u(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx).

(8)

Let us study the properties of the solution of Eq. (8). To this end, we use the successive
approximation method and represent the solution of this equation in the form

u(x, t) =

∞∑
k=0

uk(x, t); (9)

here

u0(x, t) =

√
2

l

∞∑
n=1

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)

+

√
2

l

∞∑
n=1

1

ωn

t∫
0

fn sin
(
ωn(t− s)

)
ds sin(µnx),

fn(t) =

√
2

l

l∫
0

f(ξ, t) sin(µnξ) dξ,

un(x, t) = −2

l

∞∑
n=1

1

ωn

t∫
0

q(s)

l∫
0

un−1(ξ, s) sin(ωn(t− s))

× sin(µnξ) dξ ds sin(µnx), n = 1, 2, . . .

(10)

Estimating un in the domain D, we obtain

|u0| ≤
√

2

l

∞∑
n=1

[
|φn|+

1

a

(
l

π

)2 |ψn|
n2

]
+

√
2

l

∞∑
n=1

1

a

(
l

π

)4 |fn|t
n4

≤ C0
1

∞∑
n=1

|φn|+ C0
2

∞∑
n=1

|ψn|
n2

+ C0
3

∞∑
n=1

|fn|t
n4

,

|u1| ≤ C1
1

∞∑
n=1

q0
n4

[
C0

1

∞∑
n=1

|φn|t+ C0
2

∞∑
n=1

|ψn|t
n2

+ C0
3

∞∑
n=1

|fn|
n4

t2

2!

]
,

. . . ,

|uk| ≤ Ck
1

∞∑
n=1

qk0
n4k

[
C0

1

∞∑
n=1

|φn|
tk

k!
+ C0

2

∞∑
n=1

|ψn|
n2

tk

k!
+ C0

3

∞∑
n=1

|fn|
n4

t2k

2k!

]
,

where max
0<t<T

|q(t)| = q0. Then for the series (9) we have the estimate

|u(x, t)| ≤
∞∑
k=1

Ck
1

∞∑
n=1

qk0
n4k

(
C0

1

∞∑
n=1

|φn|
tk

k!
+ C0

2

∞∑
n=1

|ψn|
n2

tk

k!
+ C0

3

∞∑
n=1

|fn|
n4

t2k

2k!

)
; (11)

here and in the following, C0
i and Ck

1 are positive constants.
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Thus, the following assertion holds.

Lemma 1. The estimate (11) holds for any (x, t) ∈ D.

The formal term-by-term differentiation of the integral equation (8) gives the relations

utt = −
√

2

l

∞∑
n=1

(
aµ4

nφn cos(ωnt) + aµ2
nψn sin(ωnt)

)
sin(µnx)

− 2

l

∞∑
n=1

µ2
n

a

t∫
0

l∫
0

f(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx)

+
2

l

∞∑
n=1

µ2
n

a

t∫
0

q(s)

l∫
0

u(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx),

(12)

uxxxx =

√
2

l

∞∑
n=1

µ4
n

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)

+
2

l

∞∑
n=1

µ2
n

a

t∫
0

l∫
0

f(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx)

− 2

l

∞∑
n=1

µ2
n

a

t∫
0

q(s)

l∫
0

u(ξ, s) sin
(
ωn(t− s)

)
sin(µnξ) dξ ds sin(µnx).

(13)

Lemma 2. Under the conditions

φ(x) ∈ C5[0, l], φ(0) = φ(l) = φ′′(0) = φ′′(l) = φ(4)(0) = φ(4)(l) = 0,

ψ(x) ∈ C3[0, l], ψ(0) = ψ(l) = ψ′′(0) = ψ′′(l) = 0,

f(x, t) ∈ C(D) ∩ C3
x(D), f(0, t) = f(l, t) = f ′′

xx(0, t) = f ′′
xx(l, t) = 0, 0 ≤ t ≤ T,

one has the relations

φn =
1

µ5
n

φ(5)
n , ψn = − 1

µ3
n

ψ′′′
n , fn(t) = − 1

µ3
n

f ′′′
n (t), (14)

where

φ(5)
n =

√
2

l

l∫
0

φ(5)(x) cos(µnx) dx, ψ′′′
n =

√
2

l

l∫
0

ψ′′′(x) cos(µnx) dx,

f ′′′
n (t) =

√
2

l

l∫
0

fxxx(x, t) cos(µnx) dx,

with the estimates
∞∑

n=1

|φ(5)
n |2 ≤ ∥φ(5)∥L2[0,l],

∞∑
n=1

|ψ′′′
n |2 ≤ ∥ψ′′′∥L2[0,l]. (15)

Integrating by parts five times in the integrals for φn and three times in the integrals for ψn

and fn(t) (see definitions (7) and (10)) and taking into account the assumptions of Lemma 2,
we obtain relation (14). Inequality (15) is the Bessel inequality for the coefficients of the Fourier
expansions of the functions φ(5)

n and ψ′′′
n in the cosine system {

√
2/l cos(µnx)} on the interval [0, l].
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If the functions φ(x), ψ(x), and f(x, t) satisfy the assumptions of Lemma 2, then, by virtue of
the representations (14) and (15), the series (12) and (13) are estimated by the following convergent
series: ∣∣u(x, t)∣∣ ≤ ∞∑

k=1

Ck
1

∞∑
n=1

q0
n4k

(
C0

1

∞∑
n=1

|φn|
tk

k!
+ C0

2

∞∑
n=1

|ψn|
n2

tk

k!
+ C0

3

∞∑
n=1

|fn|
n4

t2k

2k!

)
, (16)

∣∣utt(x, t)
∣∣ ≤ C1

∞∑
n=1

1

n

(
|φ(5)

n |+ |ψ′′′
n |
)
+ C2

∞∑
n=1

T

n

∣∣f ′′′
n (t)

∣∣+ C3

∞∑
n=1

T

n
q0|u|, (17)

∣∣uxxxx(x, t)
∣∣ ≤ C̃1

∞∑
n=1

1

n

(
|φ(5)

n |+ |ψ′′′
n |
)
+ C̃2

∞∑
n=1

T

n

∣∣f ′′′
n (t)

∣∣+ C̃3

∞∑
n=1

T

n
q0|u|, (18)

where the C̃i, i = 1, 2, 3, are positive constants.
Then the series (16), (17), and (18) converge uniformly in the rectangle D, and consequently,

the function (8) satisfies relations (1)–(3).

3. MAIN RESULT AND THE PROOF

Having multiplied both parts of Eq. (1) by h(x) and integrated from 0 to l over x, in view of
conditions (4) and (5), we obtain

g′′(t) + a2
l∫

0

u(x, t)h(4)(x) dx+ q(t)g(t) =

l∫
0

f(x, t)h(x) dx.

By solving this equation for q(t), we find that

q(t) =
1

g(t)

l∫
0

f(x, t)h(x) dx− g′′(t)

g(t)
− a2

g(t)

l∫
0

u(x, t)h(4)(x) dx. (19)

Now we substitute the expression (19) for q(t) into Eq. (8) and arrive at an integral equation
for u(x, t),

u(x, t) =

√
2

l

∞∑
n=1

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)

+
2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

f(x, s) sin
(
ωn(t− s)

)
sin(µnx) dx ds

− 2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

1

g(s)

l∫
0

f(ξ, s)h(s)u(y, s)h(4)(y) sin
(
ωn(t− s)

)
sin(µnx) dξ dy ds sin(µnx)

− 2a2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

1

g(s)

l∫
0

u(ξ, s)h(4)(ξ)u(y, s)h(4)(y) sin
(
ωn(t− s)

)
sinµn(y) dy dξ ds sin(µnx)

− 2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

g′′(s)

g(s)
u(y, s)h(4)(y) sin

(
ωn(t− s)

)
sinµn(y) dy ds sin(µnx).

For convenience, we introduce the notation:

Ψ(x, t) =

√
2

l

∞∑
n=1

(
φn cos(ωnt) +

ψn

ωn

sin(ωnt)

)
sin(µnx)
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+
2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

f(x, s) sin
(
ωn(t− s)

)
sin(µnx) dx ds,

G1(x, ξ, y, t, s) =
2

l

∞∑
n=1

1

ωng(s)
f(ξ, s)h(s)h(4)(y) sin

(
ωn(t− s)

)
sinµn(y) sin(µnx),

G2(x, y, t, s) =
2

l

∞∑
n=1

g′′(s)

ωng(s)
h(4)(y) sin

(
ωn(t− s)

)
sinµn(y) sin(µnx),

G3(x, ξ, y, t, s) =
2a2

l

∞∑
n=1

1

ωng(s)
h(4)(ξ)h(4)(y) sin

(
ωn(t− s)

)
sinµn(y) sin(µnx)

and write Eq. (6) in the more convenient form

u(x, t) = Ψ(x, t)−
t∫

0

l∫
0

l∫
0

u(y, s)G1(x, ξ, y, t, s) dξ dy ds

−
t∫

0

l∫
0

u(y, s)G2(x, y, t, s) dy ds−
t∫

0

l∫
0

l∫
0

u(ξ, s)u(y, s)G3(x, ξ, y, t, s) dy dξ ds.

(20)

Denote the operator taking the function u(x, t) to the right-hand side of Eq. (20) by A. Then
Eq. (20) is written as the operator equation

u = Au. (21)

Let

Ψ0 = max
(x,t)∈D

∣∣Ψ(x, t)
∣∣,

λ1 = max
(x,t)∈D
ξ,y∈[0,l]
s∈[0,T ]

∣∣G1(x, ξ, y, t, s)
∣∣, λ2 = max

(x,t)∈D
y∈[0,l]
s∈[0,T ]

∣∣G2(x, y, t, s)
∣∣, λ3 = max

(x,t)∈D
ξ,y∈[0,l]
s∈[0,T ]

∣∣G3(x, ξ, y, t, s)
∣∣, (22)

let Sd(0) = {u : ∥u∥ ≤ d}, and let d be some positive number.
To prove the existence of a solution of the operator equation (21), we use the Schauder princi-

ple [24].

Lemma 3. Let the assumptions of Lemma 2 be satisfied, and let |g| ≥ g0 > 0, where g0 is
a known number. Then for all T and d > Ψ0 satisfying the estimate

0 < T ≤ (d−Ψ0)/M∗, where M∗ = (λ1 + dlλ2 + λ3)dl, (23)

where the numbers λi (i = 1, 2, 3) are defined by relations (22), the operator A is uniformly bounded.
Proof. First, we establish the uniform boundedness of the operator A. To this end, we show

that there exists a ρ ∈ (0, d] such that ∥Au∥ ≤ ρ, where ∥Au∥ = max
(x,t)∈D

|Au|. For u ∈ Sd(0)

and (x, t) ∈ D, by virtue of (22) we find the estimate ∥Au∥ ≤ Ψ0 +M∗T ≡ ρ. For T that satisfy
the estimate (23), the operator A is uniformly bounded. The proof of the lemma is complete.

Lemma 4. The operator A is equicontinuous.
Proof. Recall the definition of an equicontinuous operator. An operator A is said to be

equicontinuous if for each ε > 0 there exists a δ = δ(ε) > 0 such that the inequality

∥Au1 −Au2∥ ≤ ε (24)
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42 DURDIEV

holds for all u1, u2 ∈ Sd(0) with ∥u1 − u2∥ ≤ δ. Consider the difference

Au1 −Au2 =−
t∫

0

l∫
0

(
u1(x, s)− u2(x, s)

)
G1(x, ξ, t, s) ds dx

−
t∫

0

l∫
0

l∫
0

(
u1(ξ, s)u1(x, s)− u2(ξ, s)u2(x, s)

)
G2 dx dξ ds

−
t∫

0

l∫
0

(
u1(x, s)− u2(x, s)

)
G3(x, t, s) dx ds

and introduce the notation u1 − u2 =: ũ. Performing obvious estimates, we obtain

∥Au1 −Au2∥ ≤ (λ1lT + 2λ2l
2Td+ λ3lT )∥ũ∥ ≡M∗∥ũ∥,

whence ∥Au1 − Au2∥ ≤ M∗∥u1 − u2∥ ≤ M∗δ. Consequently, if we take δ0 = ε/M∗, then in-
equality (24) will hold for δ ∈ (0, δ0]; i.e., the operator A is equicontinuous. Then the operator A is
completely continuous on Sd, and it has at least one fixed point on Sd by the Schauder principle [25].
The proof of the lemma is complete.

Thus, Lemmas 3 and 4 imply the following assertion on the existence of a solution of the operator
equation (21).

Theorem 1. Let the assumptions of Lemmas 2 and 3 be satisfied, and let relation (5) hold.
Then Eq. (21) has a solution u(x, t) ∈ C4,2(D) for T satisfying the estimate (23).

Let us prove the uniqueness of this solution.

Theorem 2. For all u ∈ Sd(0) and |g(t)| ≥ g0 > 0 and for

T <
g0

2C0d(g0 +Ha2l)
, (25)

where C0 = l2/3aπ and H = max
0<x<l

∥h(x)∥, the operator equation (21) has a unique solution in the

class C4,2(D).
Proof. Let problem (1)–(4) have two solutions u1, u2, u1 ̸= u2, and q1, q2, q1 ̸= q2. We denote

their differences by ũ = u1 − u2 and q̃ = q1 − q2. For the difference ũ, we obtain the problem

ũtt + a2ũxxxx = −q1ũ− q̃u2,

ũ|t=0 = 0, ũt|t=0 = 0,

ũ(0, t) = ũxx(0, t) = ũ(l, t) = ũxx(l, t) = 0.

The solution of this problem is written as

ũ(x, t) =
2

l

∞∑
n=1

1

ωn

t∫
0

l∫
0

(−q1ũ− q̃u2) sin(µnx) sin
(
ω(t− s)

)
dx ds sin

(
πn

l
x

)
.

For q̃, the representation (19) implies the estimate ∥q̃∥ ≤ Ha2l∥ũ∥/g0, whence we have

∥ũ∥ ≤ 2C0T

(
d+H

a2

g0
ld

)
∥ũ∥.

Hence for T that satisfy estimate (25) we obtain u1 = u2. The proof of the theorem is complete.
Based on the function u(x, t) ∈ Sd(0) thus found and using formula (19), one can find the

unknown coefficient q(t)—the solution of the Inverse problem.
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