УДК 517.953:517.958:624.27

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ПО ОПРЕДЕЛЕНИЮ НЕИЗВЕСТНОГО КОЭФФИЦИЕНТА В УРАВНЕНИИ КОЛЕБАНИЯ БАЛКИ

© 2023 У. Д. Дурдиев^{1,2,a,b}, З. Р. Бозоров^{2,c}

Бухарский государственный университет,
 ул. М. Икбол, 11, г. Бухара 200117, Узбекистан,
 ²Бухарское отделение института математики им. В. И. Романовского,
 ул. М. Икбол, 11, г. Бухара 200117, Узбекистан,

E-mails: a umidjan
93@mail.ru, b u.d.durdiev@buxdu.uz, c zavqiddinbozorov
2011@mail.ru

Поступила в редакцию 22.10.2022 г.; после доработки 01.11.2022 г.; принята к публикации 12.01.2023 г.

Проведено исследование прямой задачи для колебания однородной балки конечной длины с нелокальными по времени условиями. Получены необходимое и достаточное условия существования решения прямой задачи. Изучается обратная задача по определению коэффициента, зависящего от времени при младшей производной. С помощью собственных чисел и собственных функций задача сводится к системе интегральных уравнений. С помощью принципа Банаха показаны существование и единственность решения обратных задач.

Ключевые слова: обратная задача, нелокальные условия, колебания балки, условие переопределения, собственные функции, существование, единственность.

DOI: 10.33048/SIBJIM.2023.26.206

ВВЕДЕНИЕ

При проектировании и строительстве любых зданий важную роль отводят балкам. Этот конструктивный элемент отвечает за перераспределение нагрузок и предотвращение излома, растрескивания и разрушения отдельных частей сооружения. Поэтому ещё на стадии проектирования здания важно правильно подобрать балку, которая не только соответствует конкретным расчётным показателям, но и выдержит постоянное давление. Большинство задач о колебаниях стержней, балок и пластин играют важную роль в строительной механике, теории устойчивости ходовых валов и приводят к дифференциальным уравнениям высших порядков [1,2].

В последние годы возрос интерес к исследованию прямых и обратных задач для уравнения колебаний балки. В работе [3] проведён анализ публикаций и полученных результатов в области динамического поведения неоднородных балок и стержней по материалам зарубежной печати. Для уравнения колебаний балки в работах [4–7] исследуются начальные прямые задачи с различными граничными условиями на концах. В [8] рассмотрена прямая начальнокраевая задача и для неё изучается обратная задача по определению зависящего от времени коэффициента жёсткости балки. Численные решения уравнения поперечных колебаний балки приведены в работах [9–12]. В [13, 14] представлены приближённые методы решения прямых и обратных задач, описываемых неоднородным уравнением Бернулли — Эйлера колебаний

балки. В [15] получено аналитическое решение дифференциального уравнения поперечных колебаний кусочно-однородной балки в частотной области для краевых условий любого вида.

Известно немало случаев, когда потребности практики приводят к задачам определения коэффициентов или правой части дифференциального уравнения по некоторым известным данным от его решения. Такие задачи получили название обратных задач математической физики [16]. В [17,18] рассматриваются задачи по определению одно- и двумерных ядер в интегродифференциальных уравнениях для вязкоупругих сред. Обратные задачи для интегродифференциальных уравнений в частных производных, связанные с восстановлением ядра (памяти) в интегральном члене этого уравнения, исследуются в работах [19–22]. Численные методы нахождения решения обратных динамических задач рассмотрены в [23–25].

В данной работе рассмотрены прямая задача с нелокальными по времени и обратная задача с интегральными условиями переопределения по определению коэффициента, зависящего от времени при младшей производной для уравнения колебания балки.

1. ПОСТАНОВКИ ЗАДАЧИ

Рассмотрим балку длиной l, опирающуюся на концы. Под действием внешней силы G(x,t) вынужденные изгибные поперечные колебания балки описываются уравнением четвёртого порядка

$$\rho S u_{tt} + E J u_{xxxx} + Q(t) u = G(x, t),$$

где ρ — плотность балки, S — площадь поперечного сечения балки, E — модуль упругости материала балки, J — момент инерции поперечного сечения относительно горизонтальной оси и по всей длине поддерживается упругим основанием с коэффициентом жёсткости Q(t).

Разделив на ρS , запишем это уравнение в следующим в виде:

$$u_{tt} + a^2 u_{xxxx} + q(t)u = f(x,t), \quad (x,t) \in D,$$
 (1)

где $a^2 = EJ/\rho S,\ q(t) = Q(t)/\rho S$ и $f(x,t) = G(x,t)/\rho S.$ Уравнение (1) рассмотрим в прямоугольной области $D = \{(x,t) \mid 0 < x < l,\ 0 < t \leqslant T\},\ D_T := \overline{D},$ где l — длина балки, T — временной интервал с нелокальными начальными

$$u(x,0) + \delta_1 u(x,T) = \varphi(x), \quad u_t(x,0) + \delta_2 u_t(x,T) = \psi(x), \quad x \in [0,l],$$
 (2)

граничными условиями

$$u(0,t) = u_{xx}(0,t) = u(l,t) = u_{xx}(l,t) = 0, \quad 0 \leqslant t \leqslant T,$$
(3)

и условиями согласования

$$\varphi(0) = \psi(0) = 0, \quad \varphi(l) = \psi(l) = 0.$$

В прямой задаче требуется определить функцию

$$u(x,t) \in C(\overline{D}) \cap C_{x,t}^{4,2}(D), \tag{4}$$

удовлетворяющую равенствам (1)–(3), при положительных числах δ_1 , δ_2 и заданных числах a, l, T и достаточно гладких функциях $q(t), f(x,t), \varphi(x), \psi(x)$.

В данной работе изучается следующая обратная задача: требуется найти коэффициент $q(t), t \in [0, T]$, если известно условие переопределения:

$$\int_{0}^{l} h(x)u(x,t) dx = H(t), \quad 0 \leqslant t \leqslant T,$$
(5)

где h(x), H(t) — заданные достаточно гладкие функции, удовлетворяющие следующим условиям согласования:

$$\int_{0}^{l} h(x)\varphi(x) dx = H(0) + \delta_{1}H(T), \quad \int_{0}^{l} h(x)\psi(x) dx = H'(0) + \delta_{2}H'(T), \quad H(t) \neq 0.$$
 (6)

2. ИССЛЕДОВАНИЕ ПРЯМОЙ ЗАДАЧИ

В уравнении (1) перенесём слагаемое q(t)u(x,t) в правую часть и введём обозначение F(x,t)=f(x,t)-q(t)u(x,t). Таким образом получаем следующее уравнение $u_{tt}+a^2u_{xxxx}=F(x,t)$.

Решение задачи (1)-(3) будем искать в виде

$$u(x,t) = \sum_{k=1}^{\infty} u_k(t) X_k(x), \tag{7}$$

где

$$u_k(t) = \sqrt{\frac{2}{l}} \int_0^l u(x,t) \sin \mu_k x \, dx, \quad X_k(x) = \sqrt{\frac{2}{l}} \sin \mu_k x, \quad \mu_k = \frac{\pi k}{l},$$
 (8)

Применяя формальную схему метода Фурье и используя (1), (2), получим

$$u_k''(t) + \lambda_k^2 u_k(t) = F_k(t; q, u), \quad \lambda_k = a\mu_k^2, \quad k = 1, 2, \dots, \quad 0 < t \leqslant T,$$
 (9)

$$u_k(0) + \delta_1 u_k(T) = \varphi_k, \quad u'_k(0) + \delta_2 u'_k(T) = \psi_k, \quad k = 1, 2, \dots,$$
 (10)

где

$$F_k(t;q,u) = f_k(t) - q(t)u_k(t),$$
 (11)

$$f_k(t) = \sqrt{\frac{2}{l}} \int_0^l f(x,t) \sin \mu_k x \, dx, \tag{12}$$

$$\varphi_k = \sqrt{\frac{2}{l}} \int_0^l \varphi(x) \sin \mu_k x \, dx, \quad \psi_k = \sqrt{\frac{2}{l}} \int_0^l \psi(x) \sin \mu_k x \, dx, \quad k = 1, 2, \dots$$
 (13)

Решение задачи (9), (10) можно представить в виде [26]

$$u_k(t) = \frac{1}{\rho_k(T)} \Phi_k(t) + \int_0^T G_k(t, s) F_k(s; q, u) \, ds, \tag{14}$$

где

$$\rho_k(T) = 1 + (\delta_1 + \delta_2) \cos \lambda_k T + \delta_1 \delta_2,$$

$$\Phi_k(t) = \varphi_k(\cos \lambda_k t + \delta_2 \cos \lambda_k (T - t)) + \frac{\psi_k}{\lambda_k} (\sin \lambda_k t - \delta_1 \sin \lambda_k (T - t)),$$
(15)

$$G_{k}(t,s) = \begin{cases} -\frac{1}{\lambda_{k}\rho_{k}(T)} [\delta_{1}\sin\lambda_{k}(T-t)\cos\lambda_{k}s + \delta_{2}\cos\lambda_{k}(T-t)\sin\lambda_{k}s \\ + \delta_{1}\delta_{2}\sin\lambda_{k}(s-t)], & s \in [0,t], \end{cases}$$

$$= \begin{cases} -\frac{1}{\lambda_{k}\rho_{k}(T)} [\delta_{1}\sin\lambda_{k}(T-t)\cos\lambda_{k}s + \delta_{2}\cos\lambda_{k}(T-t)\sin\lambda_{k}s \\ + \delta_{1}\delta_{2}\sin\lambda_{k}(s-t)] + \frac{1}{\lambda_{k}}\sin\lambda_{k}(s-t), & s \in [t,T]. \end{cases}$$

$$(16)$$

Подставляя (14) в (7), получим

$$u(x,t) = \sum_{k=1}^{\infty} \left\{ \frac{1}{\rho_k(T)} \Phi_k(t) + \int_0^T G_k(t,s) F_k(s;q,u) \, ds \right\} \sin \mu_k x. \tag{17}$$

На основании полноты системы $X_k(x)$ из (8) в пространстве $L_2[0,l]$ можно доказать единственность решения задачи (1)–(4). Действительно, пусть существуют различные функции $u_1(x,t)$ и $u_2(x,t)$ — решения данной задачи. Тогда их разность $u(x,t)=u_1(x,t)-u_2(x,t)$ есть решение однородной задачи (1)–(4), где $\varphi(x)\equiv 0$, $\psi(x)\equiv 0$, $F(x,t)\equiv 0$. Тогда $\varphi_n\equiv 0$, $\psi_n\equiv 0$, $F_n(t)\equiv 0$ и из (14) получим $u_k(t)\equiv 0$, что на основании (8) равносильно равенству

$$\int_{0}^{l} u(x,t) \sin \mu_k x \, dx = 0.$$

Отсюда u(x,t)=0 почти всюду в [0,l] и при любом $t\in[0,T]$. В силу условия (4) находим $u(x,t)\equiv 0$ на \overline{D} . Тем самым единственность решения задачи (1)–(4) доказана.

Для дальнейших рассуждений нам понадобится

Теорема 1 [27, с. 44]. Пусть A(t,s), $B(t,s)-\phi$ ункции из класса $C(D,R_+)$, неубывающие по $t \in [a,b]$ для каждого $s \in [a,b]$, и

$$u(t) \le k + \int_{a}^{t} A(t,s)u(s) ds + \int_{a}^{b} B(t,s)u(s) ds, \quad t \in [a,b],$$
 (18)

 $r\partial e \ k - n$ оложительная nостоянная. Eсли

$$p(t) = \int_{a}^{b} B(t, s) \exp\left(\int_{0}^{s} A(s, \sigma) d\sigma\right) ds < 1, \quad t \in [a, b],$$

тогда

$$u(t) \leqslant \frac{k}{1 - p(t)} \exp\left(\int_{a}^{t} A(t, s) \, ds\right), \quad t \in [a, b]. \tag{19}$$

Подставляя функцию $F_k(t;q,u)$ из (11) в (14), получим

$$u_k(t) = \frac{1}{\rho_k(T)} \Phi_k(t) + \int_0^T f_k(s) G_k(t, s) \, ds - \int_0^T q(s) u_k(s) G_k(t, s) \, ds.$$

Оценивая функцию $u_k(t)$ при $t \in [0,T]$, получим следующее интегральное неравенство:

$$|u_k(t)| \leq \beta (1+\delta_2)|\varphi_k| + \frac{\beta (1+\delta_1)}{\lambda_k} |\psi_k| + \frac{\beta}{\lambda_k} \Delta_1 \int_0^T |f_k(s)| \, ds + \frac{\beta}{\lambda_k^2} \int_t^T |f_k(s)| \, ds + \frac{\tilde{q}\beta}{\lambda_k} \Delta_1 \int_0^t |u_k(s)| \, ds + \frac{\tilde{q}\beta}{\lambda_k} \int_0^T (\Delta_1 + \frac{1}{\lambda_k}) |u_k(s)| \, ds,$$

где $\Delta_1 = \delta_1 + \delta_2 + \delta_1 \delta_2$.

Применяя теорему 1 к этому соотношению, получим следующее утверждение.

Лемма 1. Пусть $0 < \frac{C_{2k}}{C_{1k}}(e^{C_{1k}T}-1) < 1$, тогда справедлива оценка

$$|u_k(t)| \leqslant \lambda_k \widetilde{C} g_k, \quad k = 1, 2, \dots,$$
 (20)

 $e \partial e$

$$C_{1k} = \frac{\tilde{q}\beta}{\lambda_k} \Delta_1, \quad C_{2k} = \frac{\tilde{q}\beta}{\lambda_k} (\Delta_1 + 1/\lambda_k),$$

$$\tilde{C} = \frac{\Delta_1 l^2}{a\pi^2 \Delta_1 (2 - e^{C_{1k}T}) + e^{C_{1k}T} - 1}, \quad \tilde{q} = \max_{s \in [0,T]} |q(s)|, \quad k = 1, 2, \dots,$$

$$g_k = \beta(1 + \delta_2) |\varphi_k| + \frac{\beta(1 + \delta_1)}{\lambda_k} |\psi_k| + \frac{\beta}{\lambda_k} \left(\Delta_1 + \frac{l^2}{a\pi^2} \right) \int_0^T |f_k(s)| \, ds, \quad k = 1, 2, \dots$$
(21)

Далее, учитывая (21), из оценки (20) получим

$$|u_k(t)| \leqslant \overline{C}_1(\lambda_k |\varphi_k| + |\psi_k| + ||f_k(t)||),$$

где $||f_k|| = \max_{0 \le t \le T} |f_k(t)|$. Используя равенство (9), получим оценку для $u_k''(t)$:

$$\left|u_k''(t)\right| \leqslant \overline{C}_2\left(\lambda_k^3|\varphi_k| + \lambda_k^2|\psi_k| + \lambda_k^2||f_k(t)|| + \tilde{q}|u_k|\right) \leqslant \overline{C}_2\left(\tilde{q} + \lambda_k^2\right)\left(\lambda_k|\varphi_k| + |\psi_k| + ||f_k(t)||\right).$$

Таким образом, доказали следующую лемму.

Лемма 2. При любом $t \in [0,T]$ и для достаточно больших k справедливы оценки

$$|u_k(t)| \leq \overline{C}_1(k^2|\varphi_k| + |\psi_k| + ||f_k(t)||_C),$$

$$|u_k''(t)| \leq \overline{C}_2(k^6|\varphi_k| + k^4|\psi_k| + k^4||f_k(t)||_C);$$

здесь и далее \overline{C}_i — положительные постоянные.

Формально из (7) почленным дифференцированием составим ряды

$$u_{tt} = \sum_{k=1}^{\infty} u_k''(t) \sin \mu_k x, \tag{22}$$

$$u_{xxxx} = \sum_{k=1}^{\infty} \mu_k^4 u_k(t) \sin \mu_k x. \tag{23}$$

Ряды (7), (22) и (23) при любых $(x,t) \in \overline{D}$ на основании леммы 1 мажорируются рядом

$$\overline{C}_3 \sum_{k=1}^{\infty} (k^6 |\varphi_k| + k^4 |\psi_k| + k^4 ||f_k(t)||_C).$$
(24)

Имеет место следующая

Лемма 3. Если выполнены условия

$$\varphi(x) \in C^{6}[0, l], \quad \varphi^{(7)}(x) \in L_{2}[0, l],$$

$$\varphi(0) = \varphi(l) = \varphi''(0) = \varphi''(l) = \varphi^{(4)}(0) = \varphi^{(4)}(l) = \varphi^{(6)}(0) = \varphi^{(6)}(l) = 0,$$

$$\psi(x) \in C^{4}[0, l], \quad \psi^{(5)}(x) \in L_{2}[0, l],$$

$$\psi(0) = \psi(l) = \psi''(0) = \psi''(l) = \psi^{(4)}(0) = \psi^{(4)}(l) = 0,$$

$$f(x, t) \in C(\overline{D}) \cap C_{x}^{4}(D), \quad f_{xxxx}^{(5)}(x, t) \in L_{2}(D),$$

$$f(0, t) = f(l, t) = f_{xx}''(0, t) = f_{xx}''(l, t) f_{xxxx}^{(4)}(0, t) = f_{xxxx}^{(4)}(l, t) = 0,$$

то имеют место равенства

$$\varphi_k = \frac{1}{\mu_k^7} \varphi_k^{(7)}, \quad \psi_k = \frac{1}{\mu_k^5} \psi_k^{(5)}, \quad f_k(t) = \frac{1}{\mu_k^5} f_k^{(5)}(t),$$
(25)

e

$$\varphi_k^{(7)} = \sqrt{\frac{2}{l}} \int_0^l \varphi^{(7)}(x) \cos(\mu_k x) dx, \quad \psi_k^{(5)} = \sqrt{\frac{2}{l}} \int_0^l \psi^{(5)}(x) \cos(\mu_k x) dx,$$
$$f_k^{(5)}(t) = \sqrt{\frac{2}{l}} \int_0^l f_{xxxxx}^{(5)}(x, t) \cos(\mu_k x) dx,$$

и справедливы следующие оценки:

$$\sum_{n=1}^{\infty} \left| \varphi_k^{(7)} \right|^2 \leqslant \| \varphi^{(7)} \|_{L_2[0,l]}, \quad \sum_{n=1}^{\infty} \left| \psi_k^{(5)} \right|^2 \leqslant \| \psi^{(5)} \|_{L_2[0,l]},$$

$$\sum_{n=1}^{\infty} \left| f_k^{(5)}(t) \right|^2 \leqslant \| f^{(5)}(t) \|_{L_2[0,l] \times C[0,T]}.$$
(26)

Берём по частям интегралы в равенствах (12) и (13) несколько раз: интегралы, имеющие подынтегральные функции f(x,t) и $\psi(x)$ — пять раз, интеграл, имеющий подынтегральную функцию $\varphi(x)$ — семь раз. Учитывая условия леммы 2, получим равенства (25). Неравенства (2) представляют собой неравенства Бесселя для коэффициентов разложений Фурье функций $\varphi_k^{(7)}$ и $\psi_k^{(5)}$ по системе косинусов $\{\sqrt{2/l}\cos(\mu_k x)\}$ на интервале [0,l]. Если функции $\varphi(x)$, $\psi(x)$ и f(x,t) удовлетворяют условиям леммы 2, то в силу представлений (25) и (2) ряды (7), (22) и (23) сходятся равномерно в прямоугольнике \overline{D} . Следовательно, функция (17) удовлетворяет соотношениям (1)—(3).

3. ИССЛЕДОВАНИЯ ОБРАТНОЙ ЗАДАЧИ

Умножив обе части уравнения (1) на h(x) и проинтегрировав от 0 до l по x, с учётом условий (5) получим

$$q(t) = [H(t)]^{-1} \left\{ \int_{0}^{l} f(x,t)h(x) dx - H''(t) - a^{2} \sqrt{\frac{l}{2}} \sum_{k=1}^{\infty} \mu_{k}^{4} u_{k}(t) h_{k} \right\},$$
 (27)

где $u_k(t)$ определяется через (14), $h_k=\sqrt{\frac{2}{l}}\int\limits_0^lh(x)\sin\mu_kx\,dx$ — коэффициент Фурье.

После подстановки (14) в (27), находим следующее интегральное уравнение относительно функции q(t):

$$q(t) = [H(t)]^{-1} \left\{ \int_{0}^{l} f(x,t)h(x) dx - H''(t) - a^{2} \sqrt{\frac{l}{2}} \sum_{k=1}^{\infty} \mu_{k}^{4} h_{k} \left(\frac{\Phi_{k}(t)}{\rho_{k}(T)} + \int_{0}^{T} G_{k}(t,s) F_{k}(s;q,u) ds \right) \right\}.$$
(28)

Рассмотрим функциональное пространство $B_{2,T}^7$ [28], множество всех функций вида (7), рассматриваемых в D_T с нормой $\|u(x,t)\|_{B_{2,T}^7}=J_T(u)$, где $u_k(t)\in C[0,T]$, и

$$J_T(u) \equiv \left\{ \sum_{k=1}^{\infty} \left(\mu_k^7 ||u_k(t)||_{C[0,T]} \right)^2 \right\}^{1/2} < +\infty.$$

В дальнейшим мы будем обозначать через E_T^7 топологическое произведение $B_{2,T}^7 \times C[0,T]$, где норма элемента $z=\{u,q\}$ определяется по формуле $\|z\|_{E_T^7}=\|u(x,t)\|_{B_{2,T}^7}+\|q(t)\|_{C[0,T]}$. Известно, что пространства $B_{2,T}^7$ и E_T^7 являются банаховыми пространствами [29].

Теперь рассмотрим оператор $\Lambda(u,q) = \{\Lambda_1(u,q), \Lambda_2(u,q)\}$ в пространстве E_T^7 , где

$$\Lambda_1(u,q) = \tilde{u}(x,t) \equiv \sum_{k=1}^{\infty} \tilde{u}_k(t) \sin \mu_k x, \quad \Lambda_2(u,q) = \tilde{q}(t),$$

и функции $\tilde{u}_k(t), k=1,2,\ldots$, и $\tilde{q}(t)$ равны правым частям равенств (14) и (28) соответственно. Нетрудно видеть, что при условиях $\delta_1\geqslant 0,\ \delta_2\geqslant 0,\ 1+\delta_1\delta_2>\delta_1+\delta_2$, имеем

$$\frac{1}{\rho_k(T)} \leqslant \frac{1}{1 - (\delta_1 + \delta_2) + \delta_1 \delta_2} \equiv \beta > 0.$$

Учитывая последнее соотношение, получаем

$$\left\{ \sum_{k=1}^{\infty} \left(\mu_k^7 \| \tilde{u}_k(t) \|_{C[0,T]} \right)^2 \right\}^{1/2} \leqslant \sqrt{\frac{2}{l}} \beta (1 + \delta_2) \left(\sum_{k=1}^{\infty} \left(\mu_k^7 |\varphi_k| \right)^2 \right)^{1/2} \\
+ \sqrt{\frac{2}{l}} \beta (1 + \delta_2) \left(\sum_{k=1}^{\infty} \left(\mu_k^5 |\psi_k| \right)^2 \right)^{1/2} + \sqrt{\frac{2}{l}} \Delta_2 \sqrt{T} \left(\int_0^T \sum_{k=1}^{\infty} \left(\mu_k^5 |f_k(s)| \right)^2 ds \right)^{1/2} \\
+ \sqrt{\frac{2}{l}} \Delta_2 T \| q(t) \|_{C[0,T]} \left(\sum_{k=1}^{\infty} \left(\mu_k^7 \| u_k(t) \|_{C[0,T]} \right)^2 \right)^{1/2}, \quad (29)$$

$$\|\tilde{q}(t)\|_{C[0,T]} \leq \|[H(t)]^{-1}\|_{C[0,T]} \left\{ \left\| \int_{0}^{l} f(x,t)h(x) dx - H''(t) \right\|_{C[0,T]} + a^{2} \sqrt{\frac{l}{2}} \left(\sum_{k=1}^{\infty} \mu_{k}^{-6} h_{k}^{2} \right)^{1/2} \left[\beta(1+\delta_{2}) \left(\sum_{k=1}^{\infty} \left(\mu_{k}^{7} |\varphi_{k}| \right)^{2} \right)^{1/2} \right] \right\}$$

$$+ \beta(1+\delta_1) \left(\sum_{k=1}^{\infty} \left(\mu_k^5 |\psi_k| \right)^2 \right)^{1/2} + \Delta_2 \sqrt{T} \left(\int_0^T \sum_{k=1}^{\infty} \left(\mu_k^5 |f_k(s)| \right)^2 ds \right)^{1/2}$$

$$+ \Delta_2 T \|q(t)\|_{C[0,T]} \left(\sum_{k=1}^{\infty} \left(\mu_k^7 \|u_k(t)\|_{C[0,T]} \right)^2 \right)^{1/2} \right] , \quad (30)$$

где $\Delta_2 = 1 + 2\beta(\delta_1 + \delta_2 + \delta_1\delta_2)$. Тогда из (3) и (3) соответственно находим

$$\left\{ \sum_{k=1}^{\infty} \left(\mu_k^7 \| \tilde{u}_k(t) \|_{C[0,T]} \right)^2 \right\}^{1/2} \leqslant \frac{2\beta}{l} (1 + \delta_2) \| \varphi^{(7)}(x) \|_{L_2[0,l]} + \frac{2\beta}{l} (1 + \delta_1) \| \psi^{(5)}(x) \|_{L_2[0,l]} \\
+ \frac{2\beta}{l} \Delta_2 \sqrt{\frac{2T}{l}} \| f_{xxxxx}(x,t) \|_{L_2(D_T)} + \sqrt{\frac{2}{l}} \Delta_2 T \| q(t) \|_{C[0,T]} \| u(x,t) \|_{B_{2,T}^7(x,t)},$$

$$\|\tilde{q}(t)\|_{C[0,T]} \leq \|[H(t)]^{-1}\|_{C[0,T]} \left\{ \left\| \int_{0}^{l} f(x,t)h(x) dx - H''(t) \right\|_{C[0,T]} + a^{2} \left(\sum_{k=1}^{\infty} \mu_{k}^{-6} h_{k}^{2} \right)^{1/2} \left[\beta(1+\delta_{2}) \|\varphi^{(7)}(x)\|_{L_{2}[0,l]} + \beta(1+\delta_{1}) \|\psi^{(5)}(x)\|_{L_{2}[0,l]} + \Delta_{2} \sqrt{\frac{2T}{l}} \|f_{xxxxx}(x,t)\|_{L_{2}(D_{T})} + \sqrt{\frac{2}{l}} \Delta_{2} T \|q(t)\|_{C[0,T]} \|u(x,t)\|_{B_{2,T}^{7}(x,t)} \right] \right\}$$

или

$$\left\{ \sum_{k=1}^{\infty} \left(\mu_k^7 \| \tilde{u}_k(t) \|_{C[0,T]} \right)^2 \right\}^{1/2} \leqslant P_1(T) + Q_1(T) \| q(t) \|_{C[0,T]} \| u(x,t) \|_{B_{2,T}^7(x,t)}, \tag{31}$$

$$\|\tilde{q}(t)\|_{C[0,T]} \le P_2(T) + Q_2(T)\|q(t)\|_{C[0,T]} \|u(x,t)\|_{B_{2,T}^7(x,t)},\tag{32}$$

где

$$P_1(T) = \frac{2\beta}{l} (1 + \delta_2) \|\varphi^{(7)}(x)\|_{L_2[0,l]} + \frac{2\beta}{l} (1 + \delta_1) \|\psi^{(5)}(x)\|_{L_2[0,l]} + \frac{2\beta}{l} \Delta_2 \sqrt{\frac{2T}{l}} \|f_{xxxxx}(x,t)\|_{L_2(D_T)},$$

$$Q_1(T) = \sqrt{\frac{2}{l}} \Delta_2 T,$$

$$P_{2}(T) = \|[H(t)]^{-1}\|_{C[0,T]} \left\{ \left\| \int_{0}^{t} f(x,t)h(x) dx - H''(t) \right\|_{C[0,T]} + a^{2} \left(\sum_{k=1}^{\infty} \mu_{k}^{-6} h_{k}^{2} \right)^{1/2} \left[\beta(1+\delta_{2}) \|\varphi^{(7)}(x)\|_{L_{2}[0,l]} + \beta(1+\delta_{1}) \|\psi^{(5)}(x)\|_{L_{2}[0,l]} + \Delta_{2} \sqrt{\frac{2T}{l}} \|f_{xxxxx}(x,t)\|_{L_{2}(D_{T})} \right] \right\},$$

$$Q_{2}(T) = a^{2} \|[H(t)]^{-1}\|_{C[0,T]} \left(\sum_{k=1}^{\infty} \mu_{k}^{-6} h_{k}^{2} \right)^{2/l} \sqrt{\frac{l}{2}} \Delta_{2} T.$$

Из неравенств (31) и (32) получаем

$$\|\tilde{u}(x,t)\|_{B_{2,T}^{7}} + \|\tilde{q}(t)\|_{C[0,T]} \leqslant P(T) + Q(T)\|q(t)\|_{C[0,T]} \|u(x,t)\|_{B_{2,T}^{7}(x,t)}, \tag{33}$$

где $P(T) = P_1(T) + P_2(T), Q(T) = Q_1(T) + Q_2(T).$

Теорема 2. Пусть выполнены условия теоремы 1, леммы 2, равенство (6) и условие

$$(P(T) + 2)^2 Q(T) < 1, (34)$$

тогда задача (1)–(5) имеет единственное решение в шаре $B = B_R(\|z\|_{E_{2,T}^7}) \leqslant R = P(T) + 2.$

Замечание. Неравенство (34) выполняется при достаточно малых значениях T.

Доказательство. Обозначим $z=(u(x,t),q(t))^*$ и запишем уравнения (17), (28) в операторном виде:

$$z = Az, (35)$$

где $A = (A_1, A_2)^*$, $A_1(z)$ и $A_2(z)$ определяются правыми частями равенств (17), (28) соответственно.

Аналогично из (33) получаем, что для любых $z, z_1, z_2 \in B_R$ справедливы следующие оценки:

$$||Az||_{E_{2,T}^{7}} \leq P(T) + Q(T)||q(t)||_{C[0,T]} ||u(x,t)||_{B_{2,T}^{7}} \leq P(T) + Q(T)(P(T) + 2)^{2},$$
(36)

$$||Az_1 - Az_2||_{E_{2,T}^7} \le Q(T)R(||q_1(t) - q_2(t)||_{C[0,T]} + ||u_1(x,t) - u_2(x,t)||_{B_{2,T}^7}).$$
(37)

Тогда в силу (34) из (36) и (37) следует, что оператор A действует в шаре $B = B_R$ и удовлетворяет условиям принципа сжимающего отображения. Следовательно, по теореме Банаха оператор A имеет единственную неподвижную точку $\{u,q\}$ в шаре $B = B_R$, являющуюся решением операторного уравнения(35).

ЗАКЛЮЧЕНИЕ

Исследована однозначная разрешимость нелокальной по времени обратной краевой задачи для уравнения колебания балки с интегральным условием переопределения. Рассматриваемая задача в определённом смысле сведена к вспомогательной задаче, и с использованием принципа сжимающих отображений установлены единственные условия существования решения эквивалентной задачи. На основании эквивалентности этих задач доказывается теорема существования и единственности решения.

ЛИТЕРАТУРА

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1966.
- 2. Крылов А.Н. Вибрация судов. Л.; М.: ОНТИ НКТП СССР, 1936.
- 3. *Гусев Б.В.*, *Caypuн В.В.* О колебаниях неоднородных балок // Инж. вестн. Дона. 2017; http://ivdon.ru/ru/magazine/archive/n3y2017/4312
- 4. Sabitov K.B. A remark on the theory of initial-boundary value problems for the equation of rods and beams // Differ. Equ. 2017. V. 53, N 1. P. 89–100; DOI: 10.1134/S0012266117010086
- 5. Sabitov K.B. Initial—boundary value problems for the beam vibration equation with allowance for its rotational motion under bending // Differ. Equ. 2021. V. 57, N 3. P. 342–352; DOI: 10.1134/S0012266121030071
- 6. Сабитов К.Б., Фадеева О.В. Начально-граничная задача для уравнения вынужденных колебаний консольной балки // Вестн. Самар. гос. ун-та. Сер. Физ.-мат. науки. 2021. Т. 25, № 1. С. 51—66; DOI: https://doi.org/10.14498/vsgtu1845

- 7. Baysal O., Hasanov A. Solvability of the clamped Euler—Bernoulli beam equation // Appl. Math. Lett. 2019. V. 93. P. 85–90; https://doi.org/10.1016/j.aml.2019.02.006
- 8. Durdiev U.D. Inverse problem of determining an unknown coefficient in the beam vibration equation // Differ. Equ. 2022. V. 58, N 1. P. 37–44; DOI: 10.1134/S0012266122010050
- 9. Tan G., Shan J., Wu Ch., Wang W. Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions // Adv. Mech. Engrg. 2017. V. 9, N 11. P. 1–17; DOI: 10.1177/1687814017737261
- Moaveni S., Hyde R. Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data // Inverse Probl. Sci. Engrg. 2016. V. 24, N 6. P. 990–1010; DOI: 10.1080/17415977.2015.1088539
- 11. Chang J.D., Guo B.Z. Identification of variable spacial coefficients for a beam equation from boundary measurements // Automatica. 2007. V. 43. P. 732–737; DOI: 10.1016/j.automatica.2006.11.002
- 12. Huang Ch.H., Shih Ch.Ch. An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler—Bernoulli beam // CMES. 2007. V. 21, N 3. P. 239–254.
- 13. Maciag A., Pawinska A. Solution of the direct and inverse problems for beam // Comput. Appl. Math. 2016. V. 35. P. 187–201; DOI 10.1007/s40314-014-0189-9
- 14. Maciag A., Pawinska A. Solving direct and inverse problems of plate vibration by using the Trefftz functions // J. Theor. Appl. Mech. 2013. V. 51, N 3. P. 543–552.
- 15. *Карчевский А.Л.* Аналитические решения дифференциального уравнения поперечных колебаний кусочно-однородной балки в частотной области для краевых условий любого вида // Сиб. журн. индустр. математики. 2020. Т. 23, № 4. С. 48—68; DOI: 10.33048/SIBJIM.2020.23.404
- 16. Романов В.Г. Обратные задачи математической физики. М.: Наука, 1984.
- 17. Дурдиев Д.К., Тотиева Ж.Д. Задача об определении одномерного ядра уравнения электровязкоупругости // Сиб. мат. журн. 2017. Т. 58, № 3. С. 553–572; DOI: https://doi.org/10.17377/smzh.2017.58.307
- 18. Дурдиев Д.К., Рахмонов А.А. Задача об определении двумерного ядра в системе интегродифференциальных уравнений вязкоупругой пористой среды // Сиб. журн. индустр. математики. 2020. Т. 23, № 2. С. 63–80; DOI: https://doi.org/10.33048/SIBJIM.2020.23.205
- 19. Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation // Euras. J. Math. Comput. Appl. 2019. V. 7, N 2. P. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19
- 20. Durdiev U.D., Totieva Zh.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation // Math. Meth. Appl. Sci. 2019. V. 42, N 18. P. 7440–7451; DOI: 10.1002/mma.5863
- Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor // Math. Meth. Appl. Sci. 2022. V. 45, N 14. P. 8374–8388; DOI: 10.1002/mma.7133
- 22. Durdiev D.K., Zhumaev Zh.Zh. One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain // Ukr. Math. J. 2022. V. 73, N 11. P. 1723–1740; DOI: 10.1007/s11253-022-02026-0
- 23. *Карчевский А.Л.*, *Фатьянов А.Г.* Численное решение обратной задачи для системы упругости с последействием для вертикально неоднородной среды // Сиб. журн. вычисл. математики. 2001. Т. 4, № 3. С. 259–268.
- 24. *Карчевский А.Л.* Определение возможности горного удара в угольном пласте // Сиб. журн. индустр. математики. 2017. Т. 20, № 4. С. 35–43; DOI: https://doi.org/10.17377/sibjim.2017.20.405
- 25. Дурдиев У.Д. Численное определение зависимости диэлектрической проницаемости слоистой среды от временной частоты // Сиб. электрон. мат. изв. 2020. Т. 17. С. 179–189; DOI: 10.33048/semi.2020.17.013
- 26. Megraliev Ya.T., Azizbayov E.I. A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition // Electron. J. Qual. Theory Differ. Equ. 2021. N 28. P. 1–12; https://doi.org/10.14232/ejqtde.2021.1.28

- 27. Pachpette B. Integral and Finite Difference Inequalities and Applications. Elsevier, 2006 (North-Holland Mathematics Studies).
- 28. Худавердиев К.И., Велиев А. А. Исследование одномерной смешанной задачи для одного класса псевдогиперболических уравнений третьего порядка с нелинейной операторной правой частью. Баку: Чашьоглы, 2010.
- 29. Tekin I., Mehraliyev Y. T., Ismailov M. I. Existence and uniqueness of an inverse problem for nonlinear Klein—Gordon equation // Math. Meth. Appl. Sci. 2019. V. 42, N 10. P. 3739–3753; https://doi.org/10.1002/mma.5609

SIBERIAN JOURNAL OF INDUSTRIAL MATHEMATICS

UDC 517.953:517.958:624.27

NONLOCAL INVERSE PROBLEM FOR DETERMINING THE UNKNOWN COEFFICIENT IN THE BEAM VIBRATION EQUATION

© 2023 U. D. Durdiev 1,2a,b , Z. R. Bozorov 2c

¹Bukhara State University, ul. M. Ikbol 11, Bukhara 200117, Uzbekistan, ²Bukhara Branch of Romanovskii Institute of Mathematics UAS, ul. M. Ikbol 11, Bukhara 200117, Uzbekistan

E-mails: a umidjan
93@mail.ru, b u.d.durdiev@buxdu.uz, c zavqiddinbozorov
2011@mail.ru

Received 22.10.2022, revised 01.11.2022, accepted 12.01.2023

Abstract. The article is devoted to the study of the direct problem for the oscillation of a homogeneous beam of finite length with non-local time conditions. Necessary and sufficient conditions for the existence of a solution to the direct problem are obtained. For the direct problem, we study the inverse problem of determining the time-dependent coefficient at the lowest derivative. Using eigenvalues and eigenfunctions, the problem is reduced to a system of integral equations. With the help of the Banach principle, the existence and uniqueness of the solution of inverse problems are shown.

Keywords: inverse problem, non-local conditions, beam oscillations, redefinition condition, eigenfunctions, existence, uniqueness.

DOI: 10.33048/SIBJIM.2023.26.206

REFERENCES

- 1. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki [Equations of mathematical physics], Moscow: Nauka, 1966 (in Russian).
- 2. Krylov A.N. Vibratsiya sudov [Vibration of ships], Moscow: ONTI, 2012 (in Russian).
- 3. Gusev B.V., Saurin V.V. O kolebaniyakh neodnorodnykh balok [On vibrations of inhomogeneous beams]. Engrg. J. Don, 2017 (in Russian); http://ivdon.ru/ru/magazine/archive/n3v2017/4312
- 4. Sabitov K.B. A remark on the theory of initial-boundary value problems for the equation of rods and beams. *Differ. Equ.*, 2017, Vol. 53, No. 1, pp. 89–100; DOI: 10.1134/S0012266117010086
- 5. Sabitov K.B. Initial—boundary value problems for the beam vibration equation with allowance for its rotational motion under bending. *Differ. Equ.*, 2021, Vol. 57, No. 3, pp. 342–352; DOI: 10.1134/S0012266121030071
- 6. Sabitov K.B., Fadeeva O.V. Nachal'no-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsol'noi balki [Initial-boundary value problem for the equation of forced vibrations of a cantilever beam]. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ. Ser. Phys. Math. Sci.], 2021, Vol. 25, No 1, pp. 51–66 (in Russian); DOI: https://doi.org/10.14498/vsgtu1845
- 7. Baysal O., Hasanov A. Solvability of the clamped Euler—Bernoulli beam equation. *Appl. Math. Lett.*, 2019, Vol. 93, pp. 85–90; https://doi.org/10.1016/j.aml.2019.02.006
- 8. Durdiev U.D. Inverse problem of determining an unknown coefficient in the beam vibration equation. *Differ. Equ.*, 2022, Vol. 58, No. 1, pp. 37–44; DOI: 10.1134/S0012266122010050

- 9. Tan G., Shan J., Wu Ch., Wang W. Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions. *Adv. Mech. Engrg.*, 2017, Vol. 9, No. 11, pp. 1–17; DOI: 10.1177/1687814017737261
- Moaveni S., Hyde R. Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data. *Inverse Probl. Sci. Engrg.*, 2016, Vol. 24, No. 6, pp. 990–1010; DOI: 10.1080/17415977.2015.1088539
- 11. Chang J.D., Guo B.Z. Identification of variable spacial coefficients for a beam equation from boundary measurements. *Automatica*, 2007, Vol. 43, pp. 732–737; DOI: 10.1016/j.automatica.2006.11.002
- 12. Huang Ch.H., Shih Ch.Ch. An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler—Bernoulli beam. *CMES*, 2007, Vol. 21, No. 3, pp. 239–254.
- 13. Maciag A., Pawinska A. Solution of the direct and inverse problems for beam. *Comput. Appl. Math.*, 2016, Vol. 35, pp. 187–201; DOI 10.1007/s40314-014-0189-9
- 14. Maciag A., Pawinska A. Solving direct and inverse problems of plate vibration by using the Trefftz functions. J. Theor. Appl. Mech., 2013, Vol. 51, No. 3, pp. 543–552.
- 15. Karchevsky A.L. Analiticheskie resheniya differentsial'nogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida [Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types]. Sib. Zhurn. Indust. Mat., 2020, Vol. 14, No. 4, pp. 648–665 (in Russian); https://doi.org/10.1134/S1990478920040043
- 16. Romanov V.G. Inverse Problems of Mathematical Physics. Utrecht: VNU Science Press, 1987.
- 17. Durdiev D.K., Totieva Zh.D. The problem of determining the one-dimensional kernel of the electroviscoelasticity equation. Sib. Math. J., 2017, Vol. 58, No. 3, pp. 427–444; DOI: 10.1134/S0037446617030077
- 18. Durdiev D.K., Rahmonov A.A. The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium. *J. Appl. Indust. Math.*, 2020, Vol. 14, No. 2, pp. 281–295; DOI: 10.1134/S1990478920020076
- 19. Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation. *Euras. J. Math. Comput. Appl.*, 2019, Vol. 7, No. 2, pp. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19
- Durdiev U.D., Totieva Zh.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation. *Math. Meth. Appl. Sci.*, 2019, Vol. 42, No. 18, pp. 7440–7451; DOI: 10.1002/mma.5863
- Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor. *Math. Meth. Appl. Sci.*, 2022, Vol. 45, No. 14, pp. 8374–8388; DOI: 10.1002/mma.7133
- 22. Durdiev D.K., Zhumaev Zh.Zh. One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain. *Ukr. Math. J.*, 2022, Vol. 73, No. 11, pp. 1723–1740; DOI: 10.1007/s11253-022-02026-0
- 23. Karchevskii A.L., Fat'yanov A.G. Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikal'no neodnorodnoi sredy [Numerical solution of the inverse problem for an elasticity system with aftereffect for a vertically inhomogeneous medium]. Sib. Zhurn. Vychisl. Mat., 2001, Vol. 4, No. 3, pp. 259–268 (in Russian).
- 24. Karchevsky A.L. Determination the possibility of a rock burst in a coal seam. J. Appl. Industr. Math., 2017, Vol. 11, No. 4, pp. 527–534; DOI: 10.1134/S199047891704010X
- 25. Durdiev U.D. Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty [Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory]. Sib. Elektron. Mat. Izv., 2020, Vol. 17, pp. 179–189 (in Russian); https://doi.org/10.33048/semi.2020.17.013
- 26. Megraliev Ya.T., Azizbayov E.I. A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition. *Electron. J. Qual. Theory Differ. Equ.*, 2021, No. 28, pp. 1–12; https://doi.org/10.14232/ejqtde.2021.1.28

- 27. Pachpette B. Integral and Finite Difference Inequalities and Applications. Elsevier, 2006 (North-Holland Math. Studies).
- 28. Khudaverdiev K.I., Veliyev A.A. Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tret'ego poryadka s nelineinoi operatornoi pravoi chast'yu. [Study of a one-dimensional mixed problem for a class of third-order pseudohyperbolic equations with a nonlinear operator right-hand side]. Baku: Chashyollu, 2010 (in Russian).
- 29. Tekin I., Mehraliyev Y. T., Ismailov M. I. Existence and uniqueness of an inverse problem for nonlinear Klein—Gordon equation. *Math. Meth. Appl. Sci.*, 2019, Vol. 42, No. 10, pp. 3739–3753; https://doi.org/10.1002/mma.5609