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Abstract—Direct and inverse problems for the equation of forced vibrations of a finite length beam
with a variable stiffness coefficient at the lowest term are investigated. The direct problem is the ini-
tial–boundary value problem for this equation with boundary conditions in the form of a beam fixed
at one end and free at the other. The unknown variable in the inverse problem is a multiplier in the
right-hand side, which depends on the space variable . This unknown is determined with respect to
the solution of the direct problem by specifying an integral redefinition condition. The uniqueness of
the solution of the direct problem is proved by the method of energy estimates. The eigenvalues and
eigenfunctions of the corresponding elliptic operator are used to reduce the problems to integral equa-
tions. The method of successive approximations is used to prove existence and uniqueness theorems
for solutions of these equations.
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INTRODUCTION
Many problems on vibrations of rods, beams, and plates have important applications in many fields,

such as the design of structures, the theory of stability of rotating shafts, and the theory of vibrations of
ships and pipelines, and they lead to at least second order differential equations [1, 2]. Recent years have
witnessed increased interest in the study of linear and nonlinear initial–boundary value problems for the
equation of beam vibrations [3–9]. The study [10] obtained an analytical solution to the differential equa-
tion of transverse vibrations of a piecewise homogeneous beam in the frequency domain for any type of
boundary conditions.

Inverse problems for beam vibration equations are not as well studied as similar problems for classical
equations of mathematical physics. It should be noted that inverse problems of determining variable coef-
ficients and right-hand sides of second-order linear parabolic equations were considered in [11–14] (see
also the literature cited in monographs [13, 14]). Various inverse problems for second-order equations of
hyperbolic type can be found in the monographs [15–17] (see also the extensive bibliography therein).
The studies [18–22] considered a new direction in the theory of inverse problems—reconstructing the
convolution kernel in hyperbolic equations describing delay phenomena. Numerical methods for solving
these problems were proposed in [23–25].

The problem of determining the time-dependent stiffness coefficient in the equation of transverse
vibrations of a beam was considered in [26]. This study considers the initial–boundary value problem for
the equation of transverse vibrations of a finite-length beam of and the inverse problem of determining the
multiplier of the right-hand side, which depends on the spatial variable x.

Let us consider the equation of vibrations of a nonhomogeneous beam:
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8 DURDIEV
where  is the length of the beam and  is the end time, with initial conditions

(2)

and boundary conditions

(3)

In the direct problem, it is required to find a function

(4)

satisfying equalities (1)–(4) for given numbers , , and  and sufficiently smooth functions , ,
, and .

Inverse problem. Let ,  be the unknown variable and  be a known function.
It is required to find  given that the solution of direct problem (1)–(4) satisfies the integral redefini-
tion condition

(5)

Let the following conditions be satisfied with respect to the given functions:

1. DIRECT PROBLEM

Moving the term  to the right-hand side of Eq. (1) and introducing the notation  =
‒ , we obtain

(6)
Solving Eq. (6) with initial (2) and boundary (3) conditions by the method of separation of variables

= , we obtain a spectral problem with respect to . This problem was considered in [9].
Following that study, we look for a solution to Eq. (6) with conditions (2), (3) in the form of a sum of
series:

(7)

where

(8)
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neous initial (2), and homogeneous boundary conditions (3), and  is a solution to Eq. (6) with a non-
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INVERSE SOURCE PROBLEM FOR THE EQUATION 9
homogeneous right-hand side ( ), zero initial (2) ( ), and boundary conditions (3).
Next,

is the system of eigenfunctions, where

(9)

It should be noted that system (8) is orthonormal and complete in  and forms an orthonormal
basis in it.

By direct calculations of the functions  and  in (7), one can easily obtain

where

Theorem 1. If there exists a solution to initial–boundary value problem (1)–(3), then the following estimate
holds for any :

(10)

where , .
Proof. We use the methodology of [6]. The following relation holds:

(11)

Integral (11) is a mathematical expression of the law of conservation of energy of free oscillations of a
string under homogeneous (zero) boundary conditions, i.e., in the absence of energy influx from outside
or when there is energy dissipation during the oscillation [27].

Let us consider the identity

Integrating this identity over the domain

and taking Green’s formula into account, we obtain the relation
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10 DURDIEV
In combination with boundary conditions (3), this relation means that

(12)

Due to the well-known inequality , relation (12) can be rewritten as

where

Thus, for any , we have

(13)

Multiplying inequality (13) by , we obtain

(14)

Integrating inequality (13) with respect to  from  to , we obtain

In view of inequality (13), it follows from here that estimate (10) is true.

Corollary 1. If there exists a solution to initial–boundary value problem (1)–(4) and , then
the relation

(15)

holds for any .
In fact, we obtain from relation (15) that the total energy of free vibrations of a homogeneous beam

remains constant and equal to its initial energy throughout the entire vibration process.
Corollary 2 (uniqueness). If there exists a function  satisfying relations (1)–(4), then it is unique.
Proof. Assume that there exist two solutions to direct problem (1)–(4). Then, their difference
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conditions (3). For this solution, we obtain from (15)
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INVERSE SOURCE PROBLEM FOR THE EQUATION 11
Let us investigate the existence of solution.
Substituting  for  in (7), we obtain

(16)

For convenience, we introduce the notation

(17)

Then, (16) can be rewritten as

Thus, we have obtained a Fredholm integral equation of the second kind. To solve this equation, we
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12 DURDIEV
Here, ,  are positive constants depending on  and .

A necessary condition for the convergence of series (18) is the inequality ; hence, we obtain the
condition for :

(19)

Then, series (18) satisfies the estimate

(20)

Thus, the following lemma holds.
Lemma 1. For any  and for all  satisfying inequality (19), estimate (20) is true.
Formal term-by-term differentiation of integral equation (16) gives

(21)

(22)
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INVERSE SOURCE PROBLEM FOR THE EQUATION 13
Based on Lemma 2, we can majorize series (16), (21), and (22) by the convergent numerical series

therefore, they converge uniformly in .
This completes the proof of the following theorem.
Theorem 2. If estimate (19) is true and the functions , ,  satisfy the conditions , , ,

then there exists a unique solution to problem (1)–(4), represented as (16).
To prove the stability of the solution of problem (1)–(3), we consider the space of square-summable

functions .
Theorem 3. Solution (7) of initial–boundary value problem (1)–(4) satisfies the following estimates:
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14 DURDIEV
It follows from (7) that

for any .
Hence, using the Cauchy–Bunyakovsky inequality, we obtain

Estimate (25) follows directly from this estimate, where , , are positive constants.

2. INVERSE PROBLEM

Let . Multiplying both sides of Eq. (1) by ; integrating with respect to  from 0 to
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Using (17) and some notations of the form

we write Eq. (30) in a more convenient form as

(31)

It should be noted that (31) is a Fredholm integral equation of the second kind with respect to the
unknown function . We use the method of successive approximations to find a solution to Eq. (31),
representing it in the form (18), where

Let us estimate  in :

where

A necessary condition for the convergence of the series is . Hence, we obtain

(32)

Then, series (18) satisfies the estimate

(33)

This completes the proof of the following theorem.

∞
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1
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n n n n
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= =
+ − ξ ξ + − ξ ξ ξ
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2 (4) 2

2 2
1 10 0 0 0
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l l l l

n n
n n

n nn n

Y x Y xad t s H d ds ad t s p H d ds
d a d

∞
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l l T l l
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= Ψ0( , ) ( , ),u x t x t
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16 DURDIEV
Theorem 4. If conditions , , , , , and estimate (32) are satisfied, then there exists a unique solu-
tion  to integral equation (31).

Using the function  and formula (29), one can find the unknown function —the
solution to the inverse problem.
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