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The problem of determining the electric prehistory of the
electrically conductive medium
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Abstract. In this paper, we study the problem of determining the electrical
prehistory of a homogeneous anisotropic medium from the integro-differential
Maxwell’s equations. As an additional condition is given with respect to the Fourier
image of the stress of the electric field at the value ν = 0 (ν is the transformation
parameter). It is shown that if the inverse problem data g(t) satisfies certain conditions
of consistency and smoothness, then there is a unique solution to the inverse problem,
and this solution continuously depends on the vector function g(t) and on the known
functions.
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1 Problem statement and main result
In rapidly changing electromagnetic fields, the frequencies of which are not limited
by the condition that they are small in comparison with the frequencies typical for
the establishment of the electric and magnetic polarization of the substance, the
unambiguous dependence of D and B (induction of the electric and magnetic fields,
respectively) on the values of E and H (the strength of the corresponding fields) is
violated. the same moment in time. It turns out that the values of D and B at a given
time depends not only on E and H, but also on the entire history of the action of
these fields (such an environment is called an environment with aftereffect)[7]. This
circumstance is an expression of the fact that the establishment of the electric and
magnetic polarization of the substance does not have time to follow the change in
the electromagnetic field. The most general view of the linear relationship between
D(x, t), B(x, t) and the corresponding meanings of the functions E(x, t), H(x, t) at
all previous points in time can be written as integral relations [7]:

D(x, t) = ε̂E +

∫ t

0

ϕ(t− τ)E(x, τ)dτ,

B(x, t) = µ̂H, (1.1)

E = (E1, E2, E3), H = (H1, H2, H3), D = (D1, D2, D3),

B = (B1, B1, B3), x = (x1, x2, x3),
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where the nondegenerate matrices ε̂ = (ε̂ij)3×3 and µ̂ = (µ̂ij)3×3 are the permittivity
and permeability matrices, respectively; ϕ(t) = diag (ϕ1, ϕ2, ϕ3) , is diagonal matrix
function representing memory. These functions are finite for all values of their
argument and tend to zero at t→∞. The latter circumstance is an expression of the
fact that the values of D(x, t), B(x, t) at a given time cannot be noticeably influenced
by the values of E(x, t), H(x, t) at very old moments. The physical mechanism
underlying the integral dependencies of the form (1.1) is in the process of establishing
electromagnetic polarization. Therefore, the interval of values in which the function
ϕ(t), differs noticeably from zero, the magnitude of the relaxation time characterizing
the rate of these processes.

Let, in accordance with equalities (1.1), the set of vectors E,H be the solution of
the Cauchy problem for the system of Maxwell equations with zero initial data:

∇×H =
∂D(x, t)

∂t
+ j, ∇× E = −∂B(x, t)

∂t
, (x, t) ∈ R4,

(E,H)

∣∣∣∣
t≤0

= 0. (1.2)

Here ∇×H is the cross product of vectors ∇ and H; j = j(x, t) is a given function
characterizing the external current density with components ji = ji(x, t). Matrices
ε̂ and µ̂ in equations (1.1) are assumed to be known and constant. Moreover, ε̂ is a
symmetric positive definite matrix. We will consider problem (1.1), (1.2) for the case
when the function j(x, t) has the form

j(x, t) = ~eδ(x)f(t), (1.3)

where ~e = (1, 0, 0) is a unit vector; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac function
depending on spatial variables and concentrated at points x1 = 0, x2 = 0, x3 = 0;
f(t) is an enough smooth function.

Problem (1.1)-(1.3) of finding vectors E(x, t), H(x, t) for given matrix functions
ε̂, µ̂, f(t), ϕ(t) is called the direct problem for Maxwell’s integro-differential equations
in a homogeneous anisotropic medium.

Let Ẽ =
(
Ẽ1, Ẽ2, Ẽ3

)
(ν, t), H̃ =

(
H̃1, H̃2, H̃3

)
(ν, t) be the Fourier transform of

functions (E,H) (x, t) with respect to variables (x1, x2, x3) ∈ R3, i.e.

Ẽj(ν, t) =

∫
R3

Ej(x, t)e
i(x,ν)dx, H̃j(ν, t) =

∫
R3

Hj(x, t)e
i(x,ν)dx,

ν = (ν1, ν2, ν3) ∈ R3, (x, ν) =

3∑
λ=1

xλνλ, j = 1, 2, 3,

where ν is the transformation parameter.
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Let us pose the following inverse problem: determine the matrix functions ϕ(t) =
diag(ϕ1, ϕ2, ϕ3) included in the integrals of equations (1.1), if the information(

Ẽ
)

(0, t) = g(t), g(t) = (g1, g2, g3), (1.4)

is given with respect to the Fourier image of the solution of direct problem (1.1),(1.2)
for any time t ≥ 0 and values ν = 0.

Everywhere below, the numbers ϕi(0), i = 1, 2, 3 are considered known and we
will be interested in the question of finding ϕi(t), i = 1, 2, 3 at t > 0.

Definition 1.1. The solution of the inverse problem is called matrix functions
ϕ(t) such that the corresponding solution of the direct problem (1.1)-(1.3) satisfies
condition (1.4).

Many technically important materials and crystals that are becoming popular in
new technologies are anisotropic. The physical properties of homogeneous isotropic
crystals do not depend on the direction and position inside the medium. At the same
time, the physical properties of anisotropic crystals strongly depend on the orientation
and position. An anisotropic crystal is called homogeneous if its physical properties
depend on orientation and do not depend on position.

Among works devoted to the determination of the integrand in a hyperbolic
equation with sources concentrated at points and at the boundaries of considered
domain, we note the papers [2], [3], [5]. Similar problems with distributed sources
are investigated in papers [6], [8]. The paper [4] presents a numerical method
for determining the dependence of the dielectric constant on frequency, when the
unchanged part of the dielectric constant was considered known. In article [1], the
problem of restoring the memory of the electric field from the integro-differential
equations of electrodynamics is investigated. In this article, we study the problem
of determining the electrical prehistory of a homogeneous anisotropic medium. It is
shown that if the vector function g(t) satisfies certain conditions of consistency and
smoothness, then there is a unique solution to the inverse problem, and this solution
continuously depends on the vector function g(t).

The mains result of this article are the following theorems.

Theorem 1.2. Suppose that g(t) ∈ C3[0, T ], f(t) ∈ C2[0, T ], f(0) 6= 0 and the
matching conditions are satisfied

g(0) = 0, g′(0) = A−1
0 ~e0f(0), iΦ0g

′(0)− g′′(0) = A−1
0 ~e0f

′(0).

Then inverse problem (1.1)-(1.4) has a unique solution ϕ(t) ∈ C1[0, T ] for fixed T > 0.

By G(γ) we denote the sets of functions g(t), f(t) satisfying the conditions of
Theorem 1.2 and condition

max

{
max

1≤i≤3
‖gi‖C3[0,T ] , ‖f‖C2[0,T ]

}
≤ γ <∞

here γ is a given number
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Theorem 1.3. Let ϕ(m)(t) ∈ C1[0, T ] be the solution to the inverse problem (1.1)-
(1.4) with (gm(t), fm(t)) ∈ G(γ), respectively. Then there is a positive constant
depending on T, γ, ε̂ij , i, j = 1, 2, 3 such that the stability estimate

3∑
j=1

∥∥ϕ1
j − ϕ2

j

∥∥
C1[0,T ]

≤ C
3∑
j=1

[∥∥g1
j − g2

j

∥∥
C3[0,T ]

+
∥∥f1 − f2

∥∥
C2[0,T ]

]
, (1.5)

is valid.

2 Transformation of the Maxwell system of
equations to a symmetric hyperbolic system
of the first order

It is not difficult to show that the system of equations (1.1)-(1.3) can be written in
the form of the following symmetric hyperbolic system of the first order:

A0
∂V

∂t
+

3∑
i=0

Ai
∂V

∂xi
+ Φ0V +

t∫
0

Φ′(t− τ)V (x, τ)dτ = F (x, t), (2.1)

with the initial condition
V

∣∣∣∣
t≤0

= 0, (2.2)

where

A0 :=

(
ε̂ 0
0 µ̂

)
6×6

, Aj :=

(
0 A1

j(
A1
j

)∗
0

)
6×6

, A1
1 :=

0 0 0
0 0 1
0 −1 0

 ,

A1
2 :=

0 0 −1
0 0 0
1 0 0

 , A1
3 :=

 0 1 0
−1 0 1
0 0 0

 , Φ0 :=

(
ϕ(0) 0

0 0

)
6×6

,

Φ′(t) :=

(
ϕ′(t) 0

0 0

)
6×6

, V := (E,H)>, F := (−j, 01×3)>;

> is the transposition symbol; 01×3 means a vector row with elements 0, 0, 0; Φ′(t) :=
(∂/∂t)Φ(t).

We apply the Fourier transform (1.4) to both sides of the equations (2.1)-(2.2).
The Fourier transformation of the vector of function V (x, t) for any finite t>0 exists,
since function V (x, t) as a solution to problem (2.1), (2.2) is the sum of a singular
generalized vector of a function of finite order and a regular vector of a function whose
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supports are bounded [9]. For a fixed ν ∈ R, the vector of function Ṽ (ν, t) (Ṽ (ν, t)
is the Fourier transform of the vector of function V (ν, t) with respect to variable x)
satisfies the initial differential equations

A0
∂Ṽ

∂t
− iBṼ +

t∫
0

Φ′(t− τ)Ṽ (ν, τ)dτ = F̃ (t), (2.3)

initial and, as follows from (1.4) additional conditions, respectively

Ṽ
∣∣
t≤0

= 0, (2.4)

Ṽ
∣∣
ν=0

= g(t), g(t) = (g1, g2, g3), t ≥ 0. (2.5)

In equation (2.3), we introduced the notation B :=
3∑
j=1

νjAj + Φ0, F̃ (t) = ~ef(t),

~e0 := (1, 0, 0, 0, 0, 0)>.
We will calculate the matrix A−1

0 , which is the inverse of A0. If we denote by
ε = (εij), µ = (µij) the inverse matrices of ε̂, µ̂, respectively, then

A−1
0 :=

(
ε 0
0 µ

)
6×6

,

Multiplying equation (2.3) from the left by A−1
0 , we get

I
∂Ṽ

∂t
− iCṼ +

t∫
0

Ψ(t− τ)Ṽ (ν, τ)dτ = F0, (2.6)

where I is the sixth order identity matrix,

C :=

 εϕ(0) ε
3∑
i=1

νiA
1
i

µ
3∑
i=1

νi(A
1
i )
> 0


6×6

,

Ψ(t) := A−1
0 Φ′(t), F0 := A−1

0 F̃ = A−1
0 ~e0f(t).

Thus, inverse problem (1.1)-(1.4) has been reduced to the problem of determining
the kernel Ψ(t) of the integral term of equation (2.6) under the given conditions
(2.4),(2.5).
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3 Proofs of the main results
First, we prove Theorem 1.2. To do this, we integrate the differential equation (2.6).
Then, using the initial condition (2.4), we find

Ṽ (ν, t) = A−1
0 ~e0

t∫
0

f(τ)dτ+iC

t∫
0

Ṽ (ν, τ)dτ−
t∫

0

τ∫
0

Ψ(α)Ṽ (ν, τ−α)dαdτ, t ≥ 0. (3.1)

Considering (2.5), from equality (3.1) we get

g(t) = A−1
0 ~e0

t∫
0

f(τ)dτ + iC0

t∫
0

g(τ)dτ +

t∫
0

Ψ(α)

τ∫
0

g(τ − α)dτdα, t ≥ 0, (3.2)

where C0 := A−1
0 Φ0. One of the conditions for agreement follows from (3.2): g(0) = 0.

Differentiating equation (3.2), we arrive at the equality
t∫

0

Ψ(τ)g(t− τ)dτ = g′(t)− iC0g(t)−A−1
0 ~e0f(t). (3.3)

Assuming t = 0 in this equation and considering g(0) = 0, we have

g′(0) = A−1
0 ~e0f(0)

Differentiating equation (3.3) again, we get
t∫

0

Ψ(τ)g′(t− τ)dτ = g′′(t)− iC0g
′(t)−A−1

0 ~e0f
′(t).

Multiplying this equality on the left by A0, we find
t∫

0

Φ′(τ)g′(t− τ)dτ = A0g
′′(t)− iΦ0g

′(t)− ~e0f
′(t).

Taking the derivative again, we obtain a linear integral equation for the matrix
function Φ′(t):

Φ′(t)g′(0) +

t∫
0

Φ′(τ)g′′(t− τ)dτ = A0g
′′′(t)− iΦ0g

′′(t)− ~e0f
′′(t).

It can be written with respect to the components ϕ′j(t), j = 1, 2, 3 of matrix Φ′(t) in
the form

ϕ′j(t) +

t∫
0

ϕ′j(τ)
g′′(t− τ)

εj1fj(0)
dτ =
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=
1

εj1fj(0)

3∑
j=1

[
ε̂jkg

′′′
k (t)− iϕj(0)g′′k (t)

]
+

f ′′j (t)

εj1fj(0)
, j = 1, 2, 3. (3.4)

Equation (3.4) is a linear Volterra integral equation of the second kind for the
unknown function ϕ′i, i = 1, 2, 3. Under the conditions of Theorem 1.2, it has
continuous free terms and kernels. To solve equation (3.4), we use the method of
successive approximations. For this purpose, we present solution (3.4) in the form of
series

ϕ′j(t) =

∞∑
n=0

(
ϕ′j
)
n

(t), (3.5)

where (
ϕ′j
)

0
(t) =

1

εj1fj(0)

3∑
j=1

[
ε̂jkg

′′′
k (t)− iϕj(0)g′′k (t)

]
+

f ′′j (t)

εj1fj(0)

(
ϕ′j
)
n
(t) =

t∫
0

(
ϕ′j
)
n−1

(τ)
g′′(t− τ)

εj1fj(0)
dτ, n = 1, 2, . . . . (3.6)

Let

C1 = max
t∈[0,T ]

∣∣∣∣∣ 1

εj1fj(0)

3∑
j=1

[
ε̂jkg

′′′
k (t)− iϕj(0)g′′k (t)

]
+

f ′′j (t)

εj1fj(0)

∣∣∣∣∣,
C2 = max

t∈[0,T ]

∣∣∣∣∣ g′′(t)

εj1fj(0)

∣∣∣∣∣
The constants C1, C2 depend on the set of given numbers T , γ, ε̂ij , i, j = 1, 2, 3.
From relations (3.6) we obtain the estimate∣∣∣∣∣ (ϕ′j)n (t)

∣∣∣∣∣ ≤ C1

n∑
i=0

Ci2
ti

i!
. (3.7)

Estimate (3.7) shows that the series (3.5) converges evenly on the segment [0, T ],

since it is mogged by the converging numerical series C1

∞∑
n=0

Ci2
T i

i!
= C1exp(C2T ),

and therefore continuously determines the solution (3.4) on the segment [0, T ]. As a
rule, this solution is the only one.

Using the functions already found ϕ′i, i = 1, 2, 3, functions ϕi, i = 1, 2, 3 is
determined by the formulas:

ϕj(t) = ϕj(0) +

t∫
0

ϕ′j(τ)dτ, j = 1, 2, 3. (3.8)

Thus Theorem 1.2 is proved.
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To prove Theorem 1.3, consider, for example, the integral equation (3.4) for(
gmj (t), fm(t)

)
∈ G(γ). The solutions of the equation corresponding to these functions

will be denoted by (ϕ′j)
m(t), m = 1, 2. Composing the difference (ϕ′j)

1 − (ϕ′j)
2, we

make estimates. As a result, we get∣∣(ϕ′j)1(t)− (ϕ′j)
2(t)

∣∣
C[0,T ]

≤ C3

∥∥g1
j − g2

j

∥∥
C3[0,T ]

+ C4

∥∥f1 − f2
∥∥
C2[0,T ]

+

+C5

t∫
0

∣∣(ϕ′j)1(τ)− (ϕ′j)
2(τ)

∣∣ dτ.
Hence, using Gronwall’s inequality, we have∥∥(ϕ′j)

1(t)− (ϕ′j)
2(t)

∥∥
C[0,T ]

≤ C6

[∥∥g1
j − g2

j

∥∥
C3[0,T ]

+
∥∥f1 − f2

∥∥
C2[0,T ]

]
.

Constants Ci, i = 3, 4, 5, 6 depends on the set of given numbers T , γ, ε̂ij , i, j = 1, 2, 3.
And so Theorem 1.3 is proved.
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