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Abstract—We study the direct problem for transverse vibrations of a homogeneous beam of
finite length with time-nonlocal conditions and obtain necessary and sufficient conditions for
the existence of its solution. For the direct problem, the inverse problem of determining the
time-dependent coefficients of the lower derivative and the right-hand side in the equation is
studied. The existence and uniqueness of the solution of the inverse problem are proved. The
solution is based on separation of variables, which is used to reduce the problems to an integral
equation and a system of integral equations.
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INTRODUCTION

Most beam vibration problems are widely used in structural mechanics and in the stability theory
of running shafts, with their solutions leading to higher-order differential equations [1, pp. 143–147].
The paper [2] provides a detailed analysis of foreign publications and results in the field of dynamic
behavior of inhomogeneous beams. The papers [3–6] study the solvability of initial–boundary value
problems for the beam vibration equation with various boundary conditions. The paper [7] deals
with the analytical solution of the differential equation of transverse vibrations of a piecewise ho-
mogeneous beam in the frequency domain for any kind of boundary conditions.

The problems of determining the coefficients or the right-hand side of a differential equation based
on some known data of its solution are called inverse problems of mathematical physics. Inverse
problems of determining the kernels of integro-differential equations from the theory of viscoelasticity
were studied in [8–10]. The papers [11–13] applied a method for solving inverse problems that is
based on the representation of the solution of two-dimensional inverse problems in the form of
a trigonometric polynomial in one of the spatial variables. The paper [14] considers the inverse
problem of determining the time-dependent coefficient in the equation of transverse vibrations of
a beam, which, from a physical point of view, represents its stiffness. Numerical methods for solving
inverse problems can be found in the papers [15–20]. The paper [21] considers an inverse problem
related to reconstructing the second moment of the cross-section area for a beam using the scheme
of a shearing uniformly distributed load. The efficiency of the variational method for solving the
inverse problem of finding the coefficients in the Euler–Bernoulli equation was demonstrated in the
paper [22].

In the present paper, we study the direct problem with time-nonlocal conditions and the inverse
problem with integral overdetermination conditions for the equation of transverse vibrations of
a homogeneous beam.

1. STATEMENT OF THE PROBLEM

Consider the following equation of transverse vibrations of a beam of length l resting on the
ends:

wtt + a2wxxxx + q(t)w = f(x, t), (x, t) ∈ Σ, (1)

where a2 = EJ/(ρS), f(x, t) is the external force, ρ is the beam density, S is the beam cross-section
area, E is the modulus of elasticity of the material, J is the moment of inertia of the beam cross
section about the horizontal axis, Σ = {(x, t) : 0 < x < l, 0 < t ≤ T} is a rectangular domain,
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360 DURDIEV

and T is the time interval. The entire length of the beam is supported by an elastic base with
stiffness coefficient q(t).

Direct problem. In the domain Σ, find a solution of Eq. (1) with the following initial and
boundary conditions:

w(x, 0) + δ1w(x, T ) = φ(x), wt(x, 0) + δ2wt(x, T ) = ψ(x), x ∈ [0, l], (2)

φ(0) = ψ(0) = 0, φ(l) = ψ(l) = 0,

w(0, t) = wxx(0, t) = w(l, t) = wxx(l, t) = 0, 0 ≤ t ≤ T.
(3)

Definition. A solution of problem (1)–(3) is a function w(x, t) in the class C4,2
x,t (Σ) satisfying

conditions (2) and (3) and making Eq. (1) an identity with positive numbers δ1, δ2 and sufficiently
smooth functions q(t), f(x, t), and φ(x), ψ(x).

Inverse problem. Let f(x, t) = g(t)f0(x). Find functions q(t) and g(t), t ∈ [0, T ], based on the
known equalities

l∫
0

yi(x)w(x, t) dx = Yi(t), i = 1, 2, (4)

where yi(x) and Yi(t) are given sufficiently smooth functions satisfying the matching conditions

l∫
0

yi(x)φ(x) dx = Yi(0) + δ1Yi(T ),

l∫
0

yi(x)ψ(x) dx = Y ′
i (0) + δ2Y

′
i (T ), Y (t) ̸= 0. (5)

2. STUDYING THE DIRECT PROBLEM

Using the notation F (x, t) := f(x, t)− q(t)w(x, t), Eq. (1) becomes wtt + a2wxxxx = F (x, t).
A solution of problem (1)–(3) is sought as

w(x, t) =

∞∑
k=1

wk(t)Xk(x), (6)

where wk(t) =
√

(2/l)
l∫
0

w(x, t) sin(µkx) dx, Xk(x) =
√

(2/l) sin(µkx), and µk = πk/l, k ∈ N.

Substituting the function (6) into Eq. (1) and conditions (2), after separating the variables we
obtain the problem

w′′
k(t) + λ2

kwk(t) = Fk(t; q, w), λk = aµ2
k, k ∈ N, 0 < t ≤ T, (7)

wk(0) + δ1wk(T ) = φk, w′
k(0) + δ2w

′
k(T ) = ψk, k ∈ N, (8)

where
Fk(t; q, w) = fk(t)− q(t)wk(t), (9)

fk(t) =

√
2

l

l∫
0

f(x, t) sin(µkx) dx, (10)

φk =

√
2

l

l∫
0

φ(x) sin(µkx) dx,

ψk =

√
2

l

l∫
0

ψ(x) sin(µkx) dx, k ∈ N.

(11)
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A TIME-NONLOCAL INVERSE PROBLEM 361

We write the solution of problem (7), (8) in the form [23]

wk(t) =
1

ρk(T )
Ek(t) +

T∫
0

Gk(t, s)Fk(s; q, w) ds, (12)

where

ρk(T ) = 1 + (δ1 + δ2) cos(λkT ) + δ1δ2,

Ek(t) = φk

(
cosλkt+ δ2 cos

(
λk(T − t)

))
+
ψk

λk

(
sin(λkt)− δ1 sin

(
λk(T − t)

))
,

Gk(t, s) =



− 1

λkρk(T )

[
δ1 sin

(
λk(T − t)

)
cos(λks) + δ2 cos

(
λk(T − t)

)
sin(λks)

+ δ1δ2 sin
(
λk(s− t)

)]
, s ∈ [0, t],

− 1

λkρk(T )

[
δ1 sin

(
λk(T − t)

)
cos(λks) + δ2 cos

(
λk(T − t)

)
sin(λks)

+ δ1δ2 sin
(
λk(s− t)

)]
+

1

λk

sin
(
λk(s− t)

)
, s ∈ [t, T ].

By substituting the expression (12) into (6), we obtain

w(x, t) =

∞∑
k=1

 1

ρk(T )
Ek(t) +

T∫
0

Gk(t, s)Fk(s; q, w) ds

 sin(µkx). (13)

It can readily be seen that for δ1 > 0 and δ2 > 0 and under the condition 1+ δ1δ2 > δ1 + δ2 we have
the inequality

1

ρk(T )
≤ 1

1− (δ1 + δ2) + δ1δ2
≡ β > 0. (14)

Theorem 1 [24]. Let α, λ, µ > 0, and let g(t) be a continuously differentiable nonnegative func-
tion on the interval [a, b] with a < b ≤ +∞. Furthermore, assume that ω(t) is integrable and
nonnegative on [a, b] and satisfies the inequality

ω(t) ≤ λ

Γ(α)

t∫
0

(t− ζ)α−1ω(ζ) dζ + µ

b∫
a

ω(ζ) dζ + g(t)

for every t ∈ [a, b). If 0 ≤ µ(b− a)Eα,2(λ(b− a)α) < 1, then

ω(t) ≤ Eα

(
λ(t− a)α

)
ω0 + g(t)− Eα

(
λ(t− a)α

)
g(a) + λ

t∫
a

(t− ζ)α−1Eα,α

(
λ(t− ζ)α

)
g(ζ) dζ,

where

ω0 ≤
1

1− µ(b− a)Eα,2

(
λ(b− a)α

)
×

µ b∫
a

g(ζ) dζ − µ(b− a)Eα,2

(
λ(b− a)α

)
g(a) + µλ

b∫
a

(b− ζ)αEα,α+1

(
λ(b− ζ)α

)
g(ζ) dζ

 .
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362 DURDIEV

Theorem 1 uses the two-parameter Mittag-Leffler function

Eα,γ =

∞∑
k=0

zk

Γ(γ + αk)
, α, γ > 0, z ∈ R; (15)

in particular, for γ = 1 it becomes the one-parameter Mittag-Leffler function, Eα,1(z) = Eα(z)
(see [25, pp. 40–49]).

Substituting the function Fk(t; q, w) (9) into (12), we have

wk(t) =
1

ρk(T )
Ek(t) +

T∫
0

fk(s)Gk(t, s) ds−
T∫

0

q(s)wk(s)Gk(t, s) ds.

Let us estimate this function considering the form of the function Ek(t) for t ∈ [0, T ],

∣∣wk(t)
∣∣ ≤ β(1 + δ2)|φk|+

β(1 + δ1)

λk

|ψk|+
βδ

λk

T∫
0

∣∣fk(s)∣∣ ds+ β

λ2
k

T∫
t

∣∣fk(s)∣∣ ds
+
q̄βδ

λk

t∫
0

∣∣wk(s)
∣∣ ds+ q̄β

λk

(
δ +

1

λk

) T∫
0

∣∣wk(s)
∣∣ ds,

where δ = δ1+δ2+δ1δ2 and q̄ = max
s∈[0,T ]

|q(s)|. Applying Theorem 1 with α = 1 to the last inequality,

in view of (15), we obtain the following assertion.

Lemma 1. Let 0 < C2k(e
C1kT − 1)/C1k < 1; then one has the estimate∣∣wk(t)

∣∣ ≤ λkC̃gk, k ∈ N, (16)

where

C1k =
q̄βδ

λk

, C2k =
q̄β

λk

(
δ +

1

λk

)
, C̃ =

δ

λ1δ(2− eC1kT ) + eC1kT − 1
, k ∈ N,

gk = β(1 + δ2)|φk|+
β(1 + δ1)

λk

|ψk|+
β

λk

(
δ +

1

λ1

) T∫
0

∣∣fk(s)∣∣ ds, k ∈ N.
(17)

Further, taking into account (17), from the estimate (16) we have∣∣wk(t)
∣∣ ≤ C1

(
λk|φk|+ |ψk|+

∥∥fk(t)∥∥),
where ∥fk∥ = max

0≤t≤T
|fk(t)|. Using Eq. (7) and inequality (12), we obtain the estimate

∣∣w′′
k(t)

∣∣ ≤ C2

(
λ3
k|φk|+ λ2

k|ψk|+ λ2
k

∥∥fk(t)∥∥+ q̄|wk|
)
≤ C2(q̄ + λ2

k)
(
λk|φk|+ |ψk|+

∥∥fk(t)∥∥).
Thus, we have proved the following assertion.

Lemma 2. For each t ∈ [0, T ] and for sufficiently large k , one has the estimates∣∣wk(t)
∣∣ ≤ C1

(
k2|φk|+ |ψk|+

∥∥fk(t)∥∥C),∣∣w′′
k(t)

∣∣ ≤ C2

(
k6|φk|+ k4|ψk|+ k4

∥∥fk(t)∥∥C).
Here and in the following, the Ci are positive constants.
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A TIME-NONLOCAL INVERSE PROBLEM 363

Formally, from (6) we compose the series

wtt =

∞∑
k=1

w′′
k(t) sin(µkx), (18)

wxxxx =

∞∑
k=1

µ4
kwk(t) sin(µkx). (19)

For any (x, t) ∈ Σ, based on Lemma 1, the series (6), (18), and (19) are majorized by the series

C3

∞∑
k=1

(
k6|φk|+ k4|ψk|+ k4

∥∥fk(t)∥∥).
The following auxiliary assertion holds true.

Lemma 3. If the conditions

φ(x) ∈ C6[0, l], φV II(x) ∈ L2[0, l],

φ(0) = φ(l) = φ′′(0) = φ′′(l) = φIV (0) = φIV (l) = φV I(0) = φV I(l) = 0,

ψ(x) ∈ C4[0, l], ψV (x) ∈ L2[0, l], ψ(0) = ψ(l) = ψ′′(0) = ψ′′(l) = ψIV (0) = ψIV (l) = 0,

f(x, t) ∈ C(Σ) ∩ C4
x(Σ), fV

xxxxx(x, t) ∈ L2(Σ),

f(0, t) = f(l, t) = f ′′
xx(0, t) = f ′′

xx(l, t) = f IV
xxxx(0, t) = f IV

xxxx(l, t) = 0

are satisfied, then one has the equalities

φk =
1

µ7
k

φV II
k , ψk =

1

µ5
k

ψV
k , fk(t) =

1

µ5
k

fV
k (t), (20)

where

φV II
k =

√
2

l

l∫
0

φV II(x) cos(µkx) dx,

ψV
k =

√
2

l

l∫
0

ψV (x) cos(µkx) dx,

fV
k (t) =

√
2

l

l∫
0

fV
xxxxx(x, t) cos(µkx) dx,

and the following estimates hold true:
∞∑

n=1

|φV II
k |2 ≤ ∥φV II∥L2[0,l],

∞∑
n=1

|ψV
k |2 ≤ ∥ψV ∥L2[0,l],

∞∑
n=1

|fV
k (t)|2 ≤ ∥fV (t)∥L2[0,l]×C[0,T ].

(21)

By applying integration by parts seven times in the integral for φk and five times in the integrals
for ψk and fk(t) (see (10) and (11)) and by taking into account the conditions in Lemma 3, we obtain
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364 DURDIEV

Eqs. (20). Inequalities (21) are the Bessel inequalities for the coefficients of the Fourier expansions
of the functions φV II

k and ψV
k in the cosine system {

√
(2/l) cos(µkx)} on the interval (0, l). If

the functions φ(x), ψ(x), and f(x, t) satisfy the conditions in Lemma 2, then, by virtue of the
representations (20) and (21), the series (6), (18), and (19) converge uniformly in the rectangle Σ,
and so the function (13) is a solution of problem (1)–(3).

3. STUDYING THE INVERSE PROBLEM

Let f(x, t) = f0(x)g(t), where f0(x) is a known function. Then Fk(t; g, q, w) = f0kg(t)−q(t)wk(t).
Multiplying both sides of Eq. (1) by yi(x), i = 1, 2, integrating from 0 to l over the variable x, and
taking into account conditions (4), we obtain the equations

g(t)

l∫
0

f0(x)y1(x) dx− q(t)Y1(t) = Y ′′
1 (t) + a2

√
l

2

∞∑
k=1

µ4
kwk(t)y1k, (22)

g(t)

l∫
0

f0(x)y2(x) dx− q(t)Y2(t) = Y ′′
2 (t) + a2

√
l

2

∞∑
k=1

µ4
kwk(t)y2k, (23)

where yik =
√

(2/l)
l∫
0

yi(x) sin(µkx) dx, k = 1, 2.

Introduce the notation

l∫
0

f0(x)y1(x) dx = α1,

l∫
0

f0(x)y2(x) dx = α2

and assume that
Y(t) = α2Y1(t)− α1Y2(t) ̸= 0, 0 ≤ t ≤ T. (24)

Then from (22) and (23) we find

g(t) =
[
Y(t)

]−1

{
Y1(t)Y

′′
2 (t)− Y2(t)Y

′′
1 (t) + a2

√
l

2

∞∑
k=1

µ4
kwk(t)

(
Y1(t)y2k − Y2(t)y1k

)}
, (25)

q(t) =
[
Y(t)

]−1

{
α1Y

′′
2 (t)− α2Y

′′
1 (t) + a2

√
l

2

∞∑
k=1

µ4
kwk(t)(α1y2k − α2y1k)

}
. (26)

After substituting the function (12) into (25) and (26), we obtain the following integral equations
for the functions g(t) and q(t):

g(t) =
[
Y(t)

]−1

Y1(t)Y
′′
2 (t)− Y2(t)Y

′′
1 (t)

+ a2
√
l

2

∞∑
k=1

µ4
k

 1

ρk(T )
Ek(t) +

T∫
0

Gk(t, s)Fk(s; g, q, w) ds

(Y1(t)y2k − Y2(t)y1k
) ,

(27)
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A TIME-NONLOCAL INVERSE PROBLEM 365

q(t) =
[
Y(t)

]−1

α1Y
′′
2 (t)− α2Y

′′
1 (t)

+ a2
√
l

2

∞∑
k=1

µ4
k

 1

ρk(T )
Ek(t) +

T∫
0

Gk(t, s)Fk(s; g, q, w) ds

 (α1y2k − α2y1k)

 .

(28)

Consider the function space B7
2,T [23], i.e., the set of all functions of the form (6) considered in Σ

with the norm ∥w(x, t)∥B7
2,T

= JT (u), where wk(t) ∈ C[0, T ] and

JT (w) ≡

{
∞∑
k=1

(
µ7
k

∥∥wk(t)
∥∥
C[0,T ]

)2
}1/2

< +∞.

In what follows, we denote by E7
2,T the topological product B7

2,T × C[0, T ] × C[0, T ], where the
norm of an element z = {w, g, q} is defined by the formula

∥z∥E7
2,T

=
∥∥w(x, t)∥∥

B7
2,T

+
∥∥g(t)∥∥

C[0,T ]
+
∥∥q(t)∥∥

C[0,T ]
.

It is well known that the spaces B7
2,T and E7

2,T are Banach spaces [26].
Now consider the operator

Λ(w, g, q) =
{
Λ1(w, g, q),Λ2(w, g, q),Λ3(w, g, q)

}
in the space E7

2,T , where

Λ1(w, g, q) = w̃(x, t) ≡
∞∑
k=1

w̃k(t) sin(µkx),

Λ2(w, g, q) = g̃(t),

Λ3(w, g, q) = q̃(t),

and the functions w̃k(t), k ∈ N, g̃(t), and q̃(t) are equal to the right-hand sides of (12), (27),
and (28), respectively.

Taking into account inequality (14), we have

{
∞∑
k=1

(
µ7
k

∥∥w̃k(t)
∥∥
C[0,T ]

)2

}1/2

≤
√

2

l
β(1 + δ2)

( ∞∑
k=1

(µ7
k|φk|)2

)1/2

+

√
2

l
β(1 + δ2)

(
∞∑
k=1

(
µ5
k|ψk|

)2)1/2

+

√
2

l
κT
∥∥g(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ5
k|fk|

)2)1/2

+

√
2

l
κT
∥∥q(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ7
k

∥∥wk(t)
∥∥
C[0,T ]

)2

)1/2

,

(29)
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where κ = 1 + 2βδ,

∥∥g̃(t)∥∥
C[0,T ]

≤
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

∥∥Y1(t)Y
′′
2 (t)− Y2(t)Y

′′
1 (t)

∥∥
C[0,T ]

+ a2
√
l

2

∥∥Y1(t)
∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y22k

)1/2

+
∥∥Y2(t)

∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y21k

)1/2


×

β(1 + δ2)

(
∞∑
k=1

(
µ7
k|φk|

)2)1/2

+ β(1 + δ1)

(
∞∑
k=1

(
µ5
k|ψk|

)2)1/2

+ κT
∥∥g(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ5
k|fk|

)2)1/2

+ κT
∥∥q(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ7
k

∥∥wk(t)
∥∥
C[0,T ]

)2
)1/2

 ,

(30)

∥∥q̃(t)∥∥
C[0,T ]

≤
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

∥∥α1Y
′′
2 (t)− α2Y

′′
1 (t)

∥∥
C[0,T ]

+ a2
√
l

2

α1

(
∞∑
k=1

µ−6
k y22k

)1/2

+ α2

(
∞∑
k=1

µ−6
k y21k

)1/2


×

β(1 + δ2)

(
∞∑
k=1

(
µ7
k|φk|

)2)1/2

+ β(1 + δ1)

(
∞∑
k=1

(µ5
k|ψk|)2

)1/2

+ κT
∥∥g(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ5
k|fk|

)2)1/2

+ κT
∥∥q(t)∥∥

C[0,T ]

(
∞∑
k=1

(
µ7
k

∥∥wk(t)
∥∥
C[0,T ]

)2
)1/2

 .

(31)

From (29)–(31), respectively, we obtain the estimates{
∞∑
k=1

(
µ7
k

∥∥w̃k(t)
∥∥
C[0,T ]

)2
}1/2

≤ 2β

l
(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+
2β

l
(1 + δ1)

∥∥ψV (x)
∥∥
L2[0,l]

+
2β

l
κT
∥∥g(t)∥∥

C[0,T ]

∥∥fV
0 (x)

∥∥
L2[0,l]

+

√
2

l
κT
∥∥q(t)∥∥

C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)
,

∥∥g̃(t)∥∥
C[0,T ]

≤
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

∥∥Y1(t)Y
′′
2 (t)− Y2(t)Y

′′
1 (t)

∥∥
C[0,T ]

+ a2

∥∥Y1(t)
∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y22k

)1/2

+
∥∥Y2(t)

∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y21k

)1/2
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×

[
β(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+ β(1 + δ1)
∥∥ψV (x)

∥∥
L2[0,l]

+ κT
∥∥g(t)∥∥

C[0,T ]

∥∥fV
0 (x)

∥∥
L2[0,l]

+

√
l

2
κT
∥∥q(t)∥∥

C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)

] ,

∥∥q̃(t)∥∥
C[0,T ]

≤
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

∥∥α1Y
′′
2 (t)− α2Y

′′
1 (t)

∥∥
C[0,T ]

+ a2
[
α1

( ∞∑
k=1

µ−6
k y22k

)1/2

+ α2

( ∞∑
k=1

µ−6
k y21k

)1/2]

×

[
β(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+ β(1 + δ1)∥ψV (x)∥L2[0,l]

+ κT
∥∥g(t)∥∥

C[0,T ]

∥∥fV
0 (x)

∥∥
L2[0,l]

+

√
l

2
κT
∥∥q(t)∥∥

C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)

] ,

or {
∞∑
k=1

(
µ7
k

∥∥w̃k(t)
∥∥
C[0,T ]

)2

}1/2

≤ L1(T ) +M1(T )
∥∥g(t)∥∥

C[0,T ]

+N1(T )
∥∥q(t)∥∥

C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)
,

(32)

∥∥g̃(t)∥∥
C[0,T ]

≤ L2(T ) +M2(T )
∥∥g(t)∥∥

C[0,T ]
+N2(T )

∥∥q(t)∥∥
C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)
, (33)∥∥q̃(t)∥∥

C[0,T ]
≤ L3(T ) +M3(T )

∥∥g(t)∥∥
C[0,T ]

+N3(T )
∥∥q(t)∥∥

C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)
, (34)

where

L1(T ) =
2β

l
(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+
2β

l
(1 + δ1)

∥∥ψV (x)
∥∥
L2[0,l]

,

M1(T ) =
2β

l
κT
∥∥fV

0 (x)
∥∥
L2[0,l]

,

N1(T ) =

√
2

l
κT,

L2(T ) =
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

{∥∥Y1(t)Y
′′
2 (t)− Y2(t)Y

′′
1 (t)

∥∥
C[0,T ]

+ a2

∥∥Y1(t)
∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y22k

)1/2

+
∥∥Y2(t)

∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y21k

)1/2


×
[
β(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+ β(1 + δ1)
∥∥ψV (x)

∥∥
L2[0,l]

]}
,

M2(T ) = a2
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

×

∥∥Y1(t)
∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y22k

)1/2

+
∥∥Y2(t)

∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y21k

)1/2
κT∥∥fV

0 (x)
∥∥
L2[0,l]

,
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N2(T ) = a2
√
l

2

∥∥∥[Y(t)
]−1
∥∥∥
C[0,T ]

×

∥∥Y1(t)
∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y22k

)1/2

+
∥∥Y2(t)

∥∥
C[0,T ]

(
∞∑
k=1

µ−6
k y21k

)1/2
κT,

L3(T ) =
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

∥∥α1Y
′′
2 (t)− α2Y

′′
1 (t)

∥∥
C[0,T ]

+ a2

α1

(
∞∑
k=1

µ−6
k y22k

)1/2

+ α2

(
∞∑
k=1

µ−6
k y21k

)1/2


×
[
β(1 + δ2)

∥∥φV II(x)
∥∥
L2[0,l]

+ β(1 + δ1)
∥∥ψV (x)

∥∥
L2[0,l]

] ,

M3(T ) = a2
∥∥∥[Y(t)

]−1
∥∥∥
C[0,T ]

α1

(
∞∑
k=1

µ−6
k y22k

)1/2

+ α2

(
∞∑
k=1

µ−6
k y21k

)1/2
κT∥∥fV

0 (x)
∥∥
L2[0,l]

,

N3(T ) = a2
√
l

2

∥∥∥[Y(t)
]−1
∥∥∥
C[0,T ]

α1

(
∞∑
k=1

µ−6
k y22k

)1/2

+ α2

(
∞∑
k=1

µ−6
k y21k

)1/2
κT.

Inequalities (32)–(34) imply the estimate∥∥w̃(x, t)∥∥
B7

2,T

+
∥∥g̃(t)∥∥

C[0,T ]
+
∥∥q̃(t)∥∥

C[0,T ]

≤ L(T ) +M(T )
∥∥g(t)∥∥

C[0,T ]
+N(T )

∥∥q(t)∥∥
C[0,T ]

∥∥w(x, t)∥∥
B7

2,T (x,t)
,

(35)

where L(T ) = L1(T ) + L2(T ) + L3(T ), M(T ) = M1(T ) +M2(T ) +M3(T ), and N(T ) = N1(T ) +
N2(T ) +N3(T ).

Theorem 2. Let the conditions in Theorem 1 and Lemma 2, (24), and the following condition
be satisfied: (

L(T ) + 2)(M(T ) +N(T )(L(T ) + 2)
)
< 2. (36)

Then problem (1)–(4) has a unique solution in the ball BR = {z : ∥z∥E7
2,T

≤ R}.

Proof. Introduce the notation z = (w(x, t), g(t), q(t))∗ and write system (13), (27), (28) in
operator form as

z = Az, (37)

where A=(A1, A2, A3)
∗,A1(z),A2(z), andA3(z) are determined by the right-hand sides of (13), (27),

and (28), respectively.
Likewise, from (35) we conclude that for any z, z1, z2 ∈ BR one has the estimates

∥Az∥E7
2,T

≤ L(T ) +M(T )
∥∥g(t)∥∥

C[0,T ]
+N(T )

∥∥q(t)∥∥
C[0,T ]

∥∥w(x, t)∥∥
B7

2,T

, (38)

∥Az1 −Az2∥E7
2,T

≤M(T )
∥∥g1(t)− g2(t)

∥∥
C[0,T ]

+N(T )R
(∥∥q1(t)− q2(t)

∥∥
C[0,T ]

+
∥∥w1(x, t)− w2(x, t)

∥∥
B7

2,T

)
.

(39)

Then, by virtue of (36), it follows from (38) and (39) that the operator A acts on the ball BR and
satisfies the contraction mapping principle. Therefore, by Banach’s theorem, the operator A has a
unique fixed point {w, g, q} in the ball BR, which is a solution of the operator equation (37).
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Thus, the function w(x, t) as an element of the space B7
2,T is continuous and has continuous

derivatives wtt(x, t) and wxxxx(x, t) in the rectangle Σ.
From (9) it is easy to see that the inequality(

∞∑
k=1

(
µk

∥∥w′′
k(t)

∥∥
C[0,T ]

)2
)1/2

≤

(
∞∑
k=1

µ−6
k

)1/2
( ∞∑

k=1

(
µ7
k

∥∥wk(t)
∥∥
C[0,T ]

)2
)1/2

+
∥∥f ′

0(x)g(t) + q(t)wx(x, t)
∥∥
L2[0,l]


holds; this implies that wtt(x, t) is continuous in Σ.

Remark. Inequality (36) is satisfied for sufficiently small T .

Theorem 3. Let all conditions in Theorem 2 and conditions (5) and (24) be satisfied. Then
problem (1)–(4) has a unique classical solution in the ball BR of the space E7

2,T .
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